k ਲਈ ਹਲ ਕਰੋ (ਜਟਿਲ ਹੱਲ)
\left\{\begin{matrix}k=-\frac{x-h+15}{3x}\text{, }&x\neq 0\\k\in \mathrm{C}\text{, }&h=15\text{ and }x=0\end{matrix}\right.
k ਲਈ ਹਲ ਕਰੋ
\left\{\begin{matrix}k=-\frac{x-h+15}{3x}\text{, }&x\neq 0\\k\in \mathrm{R}\text{, }&h=15\text{ and }x=0\end{matrix}\right.
h ਲਈ ਹਲ ਕਰੋ
h=3kx+x+15
ਗ੍ਰਾਫ
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
3kx+15=h-x
ਪਾਸਿਆਂ ਨੂੰ ਸਵੈਪ ਕਰੋ ਤਾਂ ਜੋ ਸਾਰੇ ਵੇਰੀਏਬਲ ਟਰਮ ਖੱਬੇ ਪਾਸੇ ਉੱਤੇ ਹੋਣ।
3kx=h-x-15
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 15 ਨੂੰ ਘਟਾ ਦਿਓ।
3xk=-x+h-15
ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ।
\frac{3xk}{3x}=\frac{-x+h-15}{3x}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 3x ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
k=\frac{-x+h-15}{3x}
3x ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ 3x ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
3kx+15=h-x
ਪਾਸਿਆਂ ਨੂੰ ਸਵੈਪ ਕਰੋ ਤਾਂ ਜੋ ਸਾਰੇ ਵੇਰੀਏਬਲ ਟਰਮ ਖੱਬੇ ਪਾਸੇ ਉੱਤੇ ਹੋਣ।
3kx=h-x-15
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 15 ਨੂੰ ਘਟਾ ਦਿਓ।
3xk=-x+h-15
ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ।
\frac{3xk}{3x}=\frac{-x+h-15}{3x}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 3x ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
k=\frac{-x+h-15}{3x}
3x ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ 3x ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
h=3kx+15+x
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ x ਜੋੜੋ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}