ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
ਫੈਕਟਰ
Tick mark Image
ਮੁਲਾਂਕਣ ਕਰੋ
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

2\left(x^{2}-6x+11\right)
2 ਨੂੰ ਵੱਖਰਾ ਕਰ ਦਿਓ। ਪੋਲੀਨੋਮਿਅਲ x^{2}-6x+11 ਦੇ ਫੈਕਟਰ ਨਹੀਂ ਬਣਾਏ ਜਾਂਦੇ ਕਿਉਂਕਿ ਇਸਦੇ ਕੋਈ ਰੈਸ਼ਨਲ ਰੂਟ ਨਹੀਂ ਹਨ।
2x^{2}-12x+22=0
ਦੋ-ਘਾਤੀ ਪੋਲੀਨੋਮੀਅਲ ਦੇ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ਟ੍ਰਾਂਸਫੋਰਮੇਸ਼ਨ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਫੈਕਟਰ ਬਣਾਏ ਜਾ ਸਕਦੇ ਹਨ, ਜਿੱਥੇ x_{1} ਅਤੇ x_{2} ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ ax^{2}+bx+c=0 ਦੇ ਹੱਲ ਹੁੰਦੇ ਹਨ।
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 2\times 22}}{2\times 2}
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
x=\frac{-\left(-12\right)±\sqrt{144-4\times 2\times 22}}{2\times 2}
-12 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-\left(-12\right)±\sqrt{144-8\times 22}}{2\times 2}
-4 ਨੂੰ 2 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-12\right)±\sqrt{144-176}}{2\times 2}
-8 ਨੂੰ 22 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-12\right)±\sqrt{-32}}{2\times 2}
144 ਨੂੰ -176 ਵਿੱਚ ਜੋੜੋ।
2x^{2}-12x+22
ਕਿਉਂਕਿ ਕਿਸੇ ਨਕਾਰਾਤਮਕ ਸੰਖਿਆ ਦਾ ਵਰਗ ਮੂਲ ਅਸਲ ਫਿਲਡ ਵਿੱਚ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਹੈ, ਕੋਈ ਵੀ ਸਮਾਧਾਨ ਨਹੀਂ ਹਨ। ਕ੍ਵਾਡਰਿਕ ਪੋਲੀਨੋਮਿਅਲ ਦਾ ਫੈਕਟਰ ਨਹੀਂ ਬਣਾਇਆ ਜਾ ਸਕਦਾ।