ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
ਫੈਕਟਰ
Tick mark Image
ਮੁਲਾਂਕਣ ਕਰੋ
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

-x^{2}+6x+5=0
ਦੋ-ਘਾਤੀ ਪੋਲੀਨੋਮੀਅਲ ਦੇ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ਟ੍ਰਾਂਸਫੋਰਮੇਸ਼ਨ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਫੈਕਟਰ ਬਣਾਏ ਜਾ ਸਕਦੇ ਹਨ, ਜਿੱਥੇ x_{1} ਅਤੇ x_{2} ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ ax^{2}+bx+c=0 ਦੇ ਹੱਲ ਹੁੰਦੇ ਹਨ।
x=\frac{-6±\sqrt{6^{2}-4\left(-1\right)\times 5}}{2\left(-1\right)}
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
x=\frac{-6±\sqrt{36-4\left(-1\right)\times 5}}{2\left(-1\right)}
6 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-6±\sqrt{36+4\times 5}}{2\left(-1\right)}
-4 ਨੂੰ -1 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-6±\sqrt{36+20}}{2\left(-1\right)}
4 ਨੂੰ 5 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-6±\sqrt{56}}{2\left(-1\right)}
36 ਨੂੰ 20 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-6±2\sqrt{14}}{2\left(-1\right)}
56 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{-6±2\sqrt{14}}{-2}
2 ਨੂੰ -1 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{2\sqrt{14}-6}{-2}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-6±2\sqrt{14}}{-2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। -6 ਨੂੰ 2\sqrt{14} ਵਿੱਚ ਜੋੜੋ।
x=3-\sqrt{14}
-6+2\sqrt{14} ਨੂੰ -2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{-2\sqrt{14}-6}{-2}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-6±2\sqrt{14}}{-2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। -6 ਵਿੱਚੋਂ 2\sqrt{14} ਨੂੰ ਘਟਾਓ।
x=\sqrt{14}+3
-6-2\sqrt{14} ਨੂੰ -2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
-x^{2}+6x+5=-\left(x-\left(3-\sqrt{14}\right)\right)\left(x-\left(\sqrt{14}+3\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਮੂਲ ਵਿਅੰਜਕ ਦੇ ਗੁਣਨ ਖੰਡ ਬਣਾਓ। x_{1} ਲਈ 3-\sqrt{14}ਅਤੇ x_{2} ਲਈ 3+\sqrt{14} ਬਦਲ ਹੈ।