f ਲਈ ਹਲ ਕਰੋ (ਜਟਿਲ ਹੱਲ)
\left\{\begin{matrix}f=\frac{\phi }{x}\text{, }&x\neq 0\\f\in \mathrm{C}\text{, }&\phi =0\text{ and }x=0\end{matrix}\right.
x ਲਈ ਹਲ ਕਰੋ (ਜਟਿਲ ਹੱਲ)
\left\{\begin{matrix}x=\frac{\phi }{f}\text{, }&f\neq 0\\x\in \mathrm{C}\text{, }&\phi =0\text{ and }f=0\end{matrix}\right.
f ਲਈ ਹਲ ਕਰੋ
\left\{\begin{matrix}f=\frac{\phi }{x}\text{, }&x\neq 0\\f\in \mathrm{R}\text{, }&\phi =0\text{ and }x=0\end{matrix}\right.
x ਲਈ ਹਲ ਕਰੋ
\left\{\begin{matrix}x=\frac{\phi }{f}\text{, }&f\neq 0\\x\in \mathrm{R}\text{, }&\phi =0\text{ and }f=0\end{matrix}\right.
ਗ੍ਰਾਫ
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
xf=\phi
ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ।
\frac{xf}{x}=\frac{\phi }{x}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ x ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
f=\frac{\phi }{x}
x ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ x ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
fx=\phi
ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ।
\frac{fx}{f}=\frac{\phi }{f}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ f ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x=\frac{\phi }{f}
f ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ f ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
xf=\phi
ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ।
\frac{xf}{x}=\frac{\phi }{x}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ x ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
f=\frac{\phi }{x}
x ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ x ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
fx=\phi
ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ।
\frac{fx}{f}=\frac{\phi }{f}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ f ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x=\frac{\phi }{f}
f ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ f ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}