ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
ਮੁਲਾਂਕਣ ਕਰੋ
Tick mark Image
ਵਿਸਤਾਰ ਕਰੋ
Tick mark Image

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

f\left(\frac{9}{12}-\frac{4}{12}\right)\left(2-\frac{1}{3}\right)
4 ਅਤੇ 3 ਦਾ ਸਭ ਤੋਂ ਛੋਟਾ ਆਮ ਗੁਣਕ 12 ਹੈ। \frac{3}{4} ਅਤੇ \frac{1}{3} ਨੂੰ 12 ਡਿਨੋਮਿਨੇਟਰ ਵਾਲੇ ਅੰਸ਼ ਵਿੱਚ ਬਦਲੋ।
f\times \frac{9-4}{12}\left(2-\frac{1}{3}\right)
ਕਿਉਂਕਿ \frac{9}{12} ਅਤੇ \frac{4}{12} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਟੇਰਕਾਂ ਨੂੰ ਘਟਾ ਕੇ ਇਹਨਾਂ ਨੂੰ ਘਟਾਓ।
f\times \frac{5}{12}\left(2-\frac{1}{3}\right)
5 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 9 ਵਿੱਚੋਂ 4 ਨੂੰ ਘਟਾ ਦਿਓ।
f\times \frac{5}{12}\left(\frac{6}{3}-\frac{1}{3}\right)
2 ਨੂੰ \frac{6}{3} ਅੰਸ਼ 'ਤੇ ਬਦਲੋ।
f\times \frac{5}{12}\times \frac{6-1}{3}
ਕਿਉਂਕਿ \frac{6}{3} ਅਤੇ \frac{1}{3} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਟੇਰਕਾਂ ਨੂੰ ਘਟਾ ਕੇ ਇਹਨਾਂ ਨੂੰ ਘਟਾਓ।
f\times \frac{5}{12}\times \frac{5}{3}
5 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 6 ਵਿੱਚੋਂ 1 ਨੂੰ ਘਟਾ ਦਿਓ।
f\times \frac{5\times 5}{12\times 3}
ਨਿਉਮਰੇਟਰ ਟਾਇਮਸ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡਿਨੋਮੀਨੇਟਰ ਟਾਈਮਸ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ ਗੁਣਾ ਕਰਕੇ \frac{5}{12} ਟਾਈਮਸ \frac{5}{3} ਨੂੰ ਗੁਣਾ ਕਰੋ।
f\times \frac{25}{36}
\frac{5\times 5}{12\times 3} ਫ੍ਰੈਕਸ਼ਨ ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
f\left(\frac{9}{12}-\frac{4}{12}\right)\left(2-\frac{1}{3}\right)
4 ਅਤੇ 3 ਦਾ ਸਭ ਤੋਂ ਛੋਟਾ ਆਮ ਗੁਣਕ 12 ਹੈ। \frac{3}{4} ਅਤੇ \frac{1}{3} ਨੂੰ 12 ਡਿਨੋਮਿਨੇਟਰ ਵਾਲੇ ਅੰਸ਼ ਵਿੱਚ ਬਦਲੋ।
f\times \frac{9-4}{12}\left(2-\frac{1}{3}\right)
ਕਿਉਂਕਿ \frac{9}{12} ਅਤੇ \frac{4}{12} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਟੇਰਕਾਂ ਨੂੰ ਘਟਾ ਕੇ ਇਹਨਾਂ ਨੂੰ ਘਟਾਓ।
f\times \frac{5}{12}\left(2-\frac{1}{3}\right)
5 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 9 ਵਿੱਚੋਂ 4 ਨੂੰ ਘਟਾ ਦਿਓ।
f\times \frac{5}{12}\left(\frac{6}{3}-\frac{1}{3}\right)
2 ਨੂੰ \frac{6}{3} ਅੰਸ਼ 'ਤੇ ਬਦਲੋ।
f\times \frac{5}{12}\times \frac{6-1}{3}
ਕਿਉਂਕਿ \frac{6}{3} ਅਤੇ \frac{1}{3} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਟੇਰਕਾਂ ਨੂੰ ਘਟਾ ਕੇ ਇਹਨਾਂ ਨੂੰ ਘਟਾਓ।
f\times \frac{5}{12}\times \frac{5}{3}
5 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 6 ਵਿੱਚੋਂ 1 ਨੂੰ ਘਟਾ ਦਿਓ।
f\times \frac{5\times 5}{12\times 3}
ਨਿਉਮਰੇਟਰ ਟਾਇਮਸ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡਿਨੋਮੀਨੇਟਰ ਟਾਈਮਸ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ ਗੁਣਾ ਕਰਕੇ \frac{5}{12} ਟਾਈਮਸ \frac{5}{3} ਨੂੰ ਗੁਣਾ ਕਰੋ।
f\times \frac{25}{36}
\frac{5\times 5}{12\times 3} ਫ੍ਰੈਕਸ਼ਨ ਵਿੱਚ ਗੁਣਾ ਕਰੋ।