ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
f ਲਈ ਹਲ ਕਰੋ
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

\frac{1}{f}x=\sqrt[3]{x+3}
ਸੰਖਿਆਵਾਂ ਨੂੰ ਦੁਬਾਰਾ ਤਰਤੀਬ ਦਿਓ।
1x=f\sqrt[3]{x+3}
ਵੇਰੀਏਬਲ f, 0 ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ f ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
f\sqrt[3]{x+3}=1x
ਪਾਸਿਆਂ ਨੂੰ ਸਵੈਪ ਕਰੋ ਤਾਂ ਜੋ ਸਾਰੇ ਵੇਰੀਏਬਲ ਟਰਮ ਖੱਬੇ ਪਾਸੇ ਉੱਤੇ ਹੋਣ।
\sqrt[3]{x+3}f=x
ਸੰਖਿਆਵਾਂ ਨੂੰ ਦੁਬਾਰਾ ਤਰਤੀਬ ਦਿਓ।
\frac{\sqrt[3]{x+3}f}{\sqrt[3]{x+3}}=\frac{x}{\sqrt[3]{x+3}}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ \sqrt[3]{3+x} ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
f=\frac{x}{\sqrt[3]{x+3}}
\sqrt[3]{3+x} ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ \sqrt[3]{3+x} ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
f=\frac{x}{\sqrt[3]{x+3}}\text{, }f\neq 0
ਵੇਰੀਏਬਲ f, 0 ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ।