ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
f ਲਈ ਹਲ ਕਰੋ
Tick mark Image
x ਲਈ ਹਲ ਕਰੋ
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

\frac{1}{f}x=\sqrt{x^{2}+1}-x
ਸੰਖਿਆਵਾਂ ਨੂੰ ਦੁਬਾਰਾ ਤਰਤੀਬ ਦਿਓ।
1x=f\sqrt{x^{2}+1}-xf
ਵੇਰੀਏਬਲ f, 0 ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ f ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
f\sqrt{x^{2}+1}-xf=1x
ਪਾਸਿਆਂ ਨੂੰ ਸਵੈਪ ਕਰੋ ਤਾਂ ਜੋ ਸਾਰੇ ਵੇਰੀਏਬਲ ਟਰਮ ਖੱਬੇ ਪਾਸੇ ਉੱਤੇ ਹੋਣ।
f\sqrt{x^{2}+1}-fx=x
ਸੰਖਿਆਵਾਂ ਨੂੰ ਦੁਬਾਰਾ ਤਰਤੀਬ ਦਿਓ।
\left(\sqrt{x^{2}+1}-x\right)f=x
f ਵਾਲੀਆਂ ਸਾਰੀਆਂ ਸੰਖਿਆਵਾਂ ਨੂੰ ਮਿਲਾਓ।
\frac{\left(\sqrt{x^{2}+1}-x\right)f}{\sqrt{x^{2}+1}-x}=\frac{x}{\sqrt{x^{2}+1}-x}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ \sqrt{x^{2}+1}-x ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
f=\frac{x}{\sqrt{x^{2}+1}-x}
\sqrt{x^{2}+1}-x ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ \sqrt{x^{2}+1}-x ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
f=x\left(\sqrt{x^{2}+1}+x\right)
x ਨੂੰ \sqrt{x^{2}+1}-x ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
f=x\left(\sqrt{x^{2}+1}+x\right)\text{, }f\neq 0
ਵੇਰੀਏਬਲ f, 0 ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ।