b ਲਈ ਹਲ ਕਰੋ
b=-q+\ln(28)
q ਲਈ ਹਲ ਕਰੋ
q=-b+\ln(28)
b ਲਈ ਹਲ ਕਰੋ (ਜਟਿਲ ਹੱਲ)
b=2\pi n_{1}i-q+\ln(28)
n_{1}\in \mathrm{Z}
q ਲਈ ਹਲ ਕਰੋ (ਜਟਿਲ ਹੱਲ)
q=2\pi n_{1}i-b+\ln(28)
n_{1}\in \mathrm{Z}
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
e^{b+q}+2=30
ਸਮੀਕਰਨ ਨੂੰ ਹਲ ਕਰਨ ਲਈ ਐਕਸਪੋਨੈਂਟਾਂ ਅਤੇ ਲੋਗਾਰਿਥਮਾਂ ਦੇ ਨਿਯਮਾਂ ਨੂੰ ਵਰਤੋ।
e^{b+q}=28
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 2 ਨੂੰ ਘਟਾਓ।
\log(e^{b+q})=\log(28)
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਲੋਗਾਰਿਥਮ ਲਓ।
\left(b+q\right)\log(e)=\log(28)
ਪਾਵਰ ਤੱਕ ਵਧਾਏ ਗਏ ਨੰਬਰ ਦਾ ਲੋਗਾਰਿਥਮ ਨੰਬਰ ਦੇ ਲੋਗਾਰਿਥਮ ਨਾਲ ਪਾਵਰ ਦਾ ਗਣਨਫਲ ਹੁੰਦਾ ਹੈ।
b+q=\frac{\log(28)}{\log(e)}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ \log(e) ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
b+q=\log_{e}\left(28\right)
ਬੇਸ-ਦੇ-ਪਰਿਵਰਤਨ ਸੂਤਰ ਦੁਆਰਾ \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right)।
b=\ln(28)-q
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ q ਨੂੰ ਘਟਾਓ।
e^{q+b}+2=30
ਸਮੀਕਰਨ ਨੂੰ ਹਲ ਕਰਨ ਲਈ ਐਕਸਪੋਨੈਂਟਾਂ ਅਤੇ ਲੋਗਾਰਿਥਮਾਂ ਦੇ ਨਿਯਮਾਂ ਨੂੰ ਵਰਤੋ।
e^{q+b}=28
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 2 ਨੂੰ ਘਟਾਓ।
\log(e^{q+b})=\log(28)
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਲੋਗਾਰਿਥਮ ਲਓ।
\left(q+b\right)\log(e)=\log(28)
ਪਾਵਰ ਤੱਕ ਵਧਾਏ ਗਏ ਨੰਬਰ ਦਾ ਲੋਗਾਰਿਥਮ ਨੰਬਰ ਦੇ ਲੋਗਾਰਿਥਮ ਨਾਲ ਪਾਵਰ ਦਾ ਗਣਨਫਲ ਹੁੰਦਾ ਹੈ।
q+b=\frac{\log(28)}{\log(e)}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ \log(e) ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
q+b=\log_{e}\left(28\right)
ਬੇਸ-ਦੇ-ਪਰਿਵਰਤਨ ਸੂਤਰ ਦੁਆਰਾ \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right)।
q=\ln(28)-b
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ b ਨੂੰ ਘਟਾਓ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}