ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
c ਲਈ ਹਲ ਕਰੋ (ਜਟਿਲ ਹੱਲ)
Tick mark Image
c ਲਈ ਹਲ ਕਰੋ
Tick mark Image

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

c^{2}+4c-17=-6
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
c^{2}+4c-17-\left(-6\right)=-6-\left(-6\right)
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 6 ਨੂੰ ਜੋੜੋ।
c^{2}+4c-17-\left(-6\right)=0
-6 ਨੂੰ ਆਪਣੇ-ਆਪ ਵਿੱਚੋਂ ਘਟਾ ਕੇ 0 ਬੱਚਦਾ ਹੈ।
c^{2}+4c-11=0
-17 ਵਿੱਚੋਂ -6 ਨੂੰ ਘਟਾਓ।
c=\frac{-4±\sqrt{4^{2}-4\left(-11\right)}}{2}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 1 ਨੂੰ a ਲਈ, 4 ਨੂੰ b ਲਈ, ਅਤੇ -11 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
c=\frac{-4±\sqrt{16-4\left(-11\right)}}{2}
4 ਦਾ ਵਰਗ ਕਰੋ।
c=\frac{-4±\sqrt{16+44}}{2}
-4 ਨੂੰ -11 ਵਾਰ ਗੁਣਾ ਕਰੋ।
c=\frac{-4±\sqrt{60}}{2}
16 ਨੂੰ 44 ਵਿੱਚ ਜੋੜੋ।
c=\frac{-4±2\sqrt{15}}{2}
60 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
c=\frac{2\sqrt{15}-4}{2}
ਹੁਣ, ਸਮੀਕਰਨ c=\frac{-4±2\sqrt{15}}{2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। -4 ਨੂੰ 2\sqrt{15} ਵਿੱਚ ਜੋੜੋ।
c=\sqrt{15}-2
-4+2\sqrt{15} ਨੂੰ 2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
c=\frac{-2\sqrt{15}-4}{2}
ਹੁਣ, ਸਮੀਕਰਨ c=\frac{-4±2\sqrt{15}}{2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। -4 ਵਿੱਚੋਂ 2\sqrt{15} ਨੂੰ ਘਟਾਓ।
c=-\sqrt{15}-2
-4-2\sqrt{15} ਨੂੰ 2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
c=\sqrt{15}-2 c=-\sqrt{15}-2
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
c^{2}+4c-17=-6
ਇਹੋ ਜਿਹੇ ਵਰਗਾਕਾਰ ਸਮੀਕਰਨਾਂ ਨੂੰ ਵਰਗ ਪੂਰਾ ਕਰਕੇ ਹਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਵਰਗ ਨੂੰ ਪੂਰਾ ਕਰਨ ਲਈ, ਸਮੀਕਰਨ ਦਾ ਪਹਿਲੇ x^{2}+bx=c ਦੇ ਫਾਰਮ ਵਿੱਚ ਹੋਣਾ ਲਾਜ਼ਮੀ ਹੈ।
c^{2}+4c-17-\left(-17\right)=-6-\left(-17\right)
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 17 ਨੂੰ ਜੋੜੋ।
c^{2}+4c=-6-\left(-17\right)
-17 ਨੂੰ ਆਪਣੇ-ਆਪ ਵਿੱਚੋਂ ਘਟਾ ਕੇ 0 ਬੱਚਦਾ ਹੈ।
c^{2}+4c=11
-6 ਵਿੱਚੋਂ -17 ਨੂੰ ਘਟਾਓ।
c^{2}+4c+2^{2}=11+2^{2}
4, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ 2 ਨਿਕਲੇ। ਫੇਰ, 2 ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
c^{2}+4c+4=11+4
2 ਦਾ ਵਰਗ ਕਰੋ।
c^{2}+4c+4=15
11 ਨੂੰ 4 ਵਿੱਚ ਜੋੜੋ।
\left(c+2\right)^{2}=15
ਫੈਕਟਰ c^{2}+4c+4। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(c+2\right)^{2}}=\sqrt{15}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
c+2=\sqrt{15} c+2=-\sqrt{15}
ਸਪਸ਼ਟ ਕਰੋ।
c=\sqrt{15}-2 c=-\sqrt{15}-2
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 2 ਨੂੰ ਘਟਾਓ।
c^{2}+4c-17=-6
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
c^{2}+4c-17-\left(-6\right)=-6-\left(-6\right)
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 6 ਨੂੰ ਜੋੜੋ।
c^{2}+4c-17-\left(-6\right)=0
-6 ਨੂੰ ਆਪਣੇ-ਆਪ ਵਿੱਚੋਂ ਘਟਾ ਕੇ 0 ਬੱਚਦਾ ਹੈ।
c^{2}+4c-11=0
-17 ਵਿੱਚੋਂ -6 ਨੂੰ ਘਟਾਓ।
c=\frac{-4±\sqrt{4^{2}-4\left(-11\right)}}{2}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 1 ਨੂੰ a ਲਈ, 4 ਨੂੰ b ਲਈ, ਅਤੇ -11 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
c=\frac{-4±\sqrt{16-4\left(-11\right)}}{2}
4 ਦਾ ਵਰਗ ਕਰੋ।
c=\frac{-4±\sqrt{16+44}}{2}
-4 ਨੂੰ -11 ਵਾਰ ਗੁਣਾ ਕਰੋ।
c=\frac{-4±\sqrt{60}}{2}
16 ਨੂੰ 44 ਵਿੱਚ ਜੋੜੋ।
c=\frac{-4±2\sqrt{15}}{2}
60 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
c=\frac{2\sqrt{15}-4}{2}
ਹੁਣ, ਸਮੀਕਰਨ c=\frac{-4±2\sqrt{15}}{2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। -4 ਨੂੰ 2\sqrt{15} ਵਿੱਚ ਜੋੜੋ।
c=\sqrt{15}-2
-4+2\sqrt{15} ਨੂੰ 2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
c=\frac{-2\sqrt{15}-4}{2}
ਹੁਣ, ਸਮੀਕਰਨ c=\frac{-4±2\sqrt{15}}{2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। -4 ਵਿੱਚੋਂ 2\sqrt{15} ਨੂੰ ਘਟਾਓ।
c=-\sqrt{15}-2
-4-2\sqrt{15} ਨੂੰ 2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
c=\sqrt{15}-2 c=-\sqrt{15}-2
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
c^{2}+4c-17=-6
ਇਹੋ ਜਿਹੇ ਵਰਗਾਕਾਰ ਸਮੀਕਰਨਾਂ ਨੂੰ ਵਰਗ ਪੂਰਾ ਕਰਕੇ ਹਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਵਰਗ ਨੂੰ ਪੂਰਾ ਕਰਨ ਲਈ, ਸਮੀਕਰਨ ਦਾ ਪਹਿਲੇ x^{2}+bx=c ਦੇ ਫਾਰਮ ਵਿੱਚ ਹੋਣਾ ਲਾਜ਼ਮੀ ਹੈ।
c^{2}+4c-17-\left(-17\right)=-6-\left(-17\right)
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 17 ਨੂੰ ਜੋੜੋ।
c^{2}+4c=-6-\left(-17\right)
-17 ਨੂੰ ਆਪਣੇ-ਆਪ ਵਿੱਚੋਂ ਘਟਾ ਕੇ 0 ਬੱਚਦਾ ਹੈ।
c^{2}+4c=11
-6 ਵਿੱਚੋਂ -17 ਨੂੰ ਘਟਾਓ।
c^{2}+4c+2^{2}=11+2^{2}
4, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ 2 ਨਿਕਲੇ। ਫੇਰ, 2 ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
c^{2}+4c+4=11+4
2 ਦਾ ਵਰਗ ਕਰੋ।
c^{2}+4c+4=15
11 ਨੂੰ 4 ਵਿੱਚ ਜੋੜੋ।
\left(c+2\right)^{2}=15
ਫੈਕਟਰ c^{2}+4c+4। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(c+2\right)^{2}}=\sqrt{15}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
c+2=\sqrt{15} c+2=-\sqrt{15}
ਸਪਸ਼ਟ ਕਰੋ।
c=\sqrt{15}-2 c=-\sqrt{15}-2
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 2 ਨੂੰ ਘਟਾਓ।