ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
b ਲਈ ਹਲ ਕਰੋ
Tick mark Image

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

b^{2}-8b=-7
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 8b ਨੂੰ ਘਟਾ ਦਿਓ।
b^{2}-8b+7=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 7 ਜੋੜੋ।
a+b=-8 ab=7
ਸਮੀਕਰਨ ਨੂੰ ਹੱਲ ਕਰਨ ਲਈ, b^{2}+\left(a+b\right)b+ab=\left(b+a\right)\left(b+b\right) ਸੂਤਰ ਦੀ ਵਰਤੋਂ ਕਰਕੇ b^{2}-8b+7 ਦਾ ਫੈਕਟਰ ਬਣਾਓ। a ਅਤੇ b ਨੂੰ ਕੱਢਣ ਲਈ, ਹੱਲ ਕੀਤੇ ਜਾਣ ਵਾਲੇ ਸਿਸਟਮ ਨੂੰ ਸੈਟਅੱਪ ਕਰੋ।
a=-7 b=-1
ਕਿਉਂਕਿ ab ਪਾਜ਼ੇਟਿਵ ਹੈ, a ਅਤੇ b ਦਾ ਸਮਾਨ ਚਿੰਨ੍ਹ ਹੁੰਦਾ ਹੈ। ਕਿਉਂਕਿ a+b ਨੈਗੇਟਿਵ ਹੈ, a ਅਤੇ b ਦੋਵੇਂ ਪਾਜ਼ੇਟਿਵ ਹੁੰਦੇ ਹਨ। ਸਿਰਫ਼ ਅਜਿਹਾ ਜੋੜਾ ਹੀ ਸਿਸਟਮ ਹੱਲ ਹੁੰਦਾ ਹੈ।
\left(b-7\right)\left(b-1\right)
ਹਾਸਲ ਕੀਤੀਆਂ ਵੈਲਯੂਜ਼ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਫੈਕਟਰ ਵਾਲੀ ਅਭਿਵਿਅਕਤੀ \left(b+a\right)\left(b+b\right) ਨੂੰ ਦੁਬਾਰਾ ਲਿਖੋ।
b=7 b=1
ਸਮੀਕਰਨਾਂ ਦੇ ਹੱਲ ਕੱਢਣ ਲਈ, b-7=0 ਅਤੇ b-1=0 ਨੂੰ ਹੱਲ ਕਰੋ।
b^{2}-8b=-7
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 8b ਨੂੰ ਘਟਾ ਦਿਓ।
b^{2}-8b+7=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 7 ਜੋੜੋ।
a+b=-8 ab=1\times 7=7
ਸਮੀਕਰਨ ਨੂੰ ਹੱਲ ਕਰਨ ਲਈ, ਸਮੂਹ ਬਣਾ ਕੇ ਖੱਬੇ ਪਾਸੇ ਦਾ ਫੈਕਟਰ ਕੱਢੋ। ਪਹਿਲਾਂ, ਖੱਬੇ ਪਾਸੇ ਵਾਲੇ ਨੂੰ b^{2}+ab+bb+7 ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖਣ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ। a ਅਤੇ b ਨੂੰ ਕੱਢਣ ਲਈ, ਹੱਲ ਕੀਤੇ ਜਾਣ ਵਾਲੇ ਸਿਸਟਮ ਨੂੰ ਸੈਟਅੱਪ ਕਰੋ।
a=-7 b=-1
ਕਿਉਂਕਿ ab ਪਾਜ਼ੇਟਿਵ ਹੈ, a ਅਤੇ b ਦਾ ਸਮਾਨ ਚਿੰਨ੍ਹ ਹੁੰਦਾ ਹੈ। ਕਿਉਂਕਿ a+b ਨੈਗੇਟਿਵ ਹੈ, a ਅਤੇ b ਦੋਵੇਂ ਪਾਜ਼ੇਟਿਵ ਹੁੰਦੇ ਹਨ। ਸਿਰਫ਼ ਅਜਿਹਾ ਜੋੜਾ ਹੀ ਸਿਸਟਮ ਹੱਲ ਹੁੰਦਾ ਹੈ।
\left(b^{2}-7b\right)+\left(-b+7\right)
b^{2}-8b+7 ਨੂੰ \left(b^{2}-7b\right)+\left(-b+7\right) ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖੋ।
b\left(b-7\right)-\left(b-7\right)
ਪਹਿਲੇ ਸਮੂਹ ਵਿੱਚ b ਦਾ ਅਤੇ ਦੂਜੇ ਵਿੱਚ -1 ਦਾ ਫੈਕਟਰ ਬਣਾਓ।
\left(b-7\right)\left(b-1\right)
ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੌਪਰਟੀ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਕੋਮਨ ਟਰਮ b-7 ਦਾ ਫੈਕਟਰ ਕੱਢੋ।
b=7 b=1
ਸਮੀਕਰਨਾਂ ਦੇ ਹੱਲ ਕੱਢਣ ਲਈ, b-7=0 ਅਤੇ b-1=0 ਨੂੰ ਹੱਲ ਕਰੋ।
b^{2}-8b=-7
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 8b ਨੂੰ ਘਟਾ ਦਿਓ।
b^{2}-8b+7=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 7 ਜੋੜੋ।
b=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 7}}{2}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 1 ਨੂੰ a ਲਈ, -8 ਨੂੰ b ਲਈ, ਅਤੇ 7 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
b=\frac{-\left(-8\right)±\sqrt{64-4\times 7}}{2}
-8 ਦਾ ਵਰਗ ਕਰੋ।
b=\frac{-\left(-8\right)±\sqrt{64-28}}{2}
-4 ਨੂੰ 7 ਵਾਰ ਗੁਣਾ ਕਰੋ।
b=\frac{-\left(-8\right)±\sqrt{36}}{2}
64 ਨੂੰ -28 ਵਿੱਚ ਜੋੜੋ।
b=\frac{-\left(-8\right)±6}{2}
36 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
b=\frac{8±6}{2}
-8 ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ 8 ਹੈ।
b=\frac{14}{2}
ਹੁਣ, ਸਮੀਕਰਨ b=\frac{8±6}{2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। 8 ਨੂੰ 6 ਵਿੱਚ ਜੋੜੋ।
b=7
14 ਨੂੰ 2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
b=\frac{2}{2}
ਹੁਣ, ਸਮੀਕਰਨ b=\frac{8±6}{2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। 8 ਵਿੱਚੋਂ 6 ਨੂੰ ਘਟਾਓ।
b=1
2 ਨੂੰ 2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
b=7 b=1
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
b^{2}-8b=-7
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 8b ਨੂੰ ਘਟਾ ਦਿਓ।
b^{2}-8b+\left(-4\right)^{2}=-7+\left(-4\right)^{2}
-8, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ -4 ਨਿਕਲੇ। ਫੇਰ, -4 ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
b^{2}-8b+16=-7+16
-4 ਦਾ ਵਰਗ ਕਰੋ।
b^{2}-8b+16=9
-7 ਨੂੰ 16 ਵਿੱਚ ਜੋੜੋ।
\left(b-4\right)^{2}=9
ਫੈਕਟਰ b^{2}-8b+16। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(b-4\right)^{2}}=\sqrt{9}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
b-4=3 b-4=-3
ਸਪਸ਼ਟ ਕਰੋ।
b=7 b=1
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 4 ਨੂੰ ਜੋੜੋ।