a ਲਈ ਹਲ ਕਰੋ (ਜਟਿਲ ਹੱਲ)
\left\{\begin{matrix}a=-\frac{b}{x+1}\text{, }&x\neq -1\\a\in \mathrm{C}\text{, }&x=1\text{ or }\left(b=0\text{ and }x=-1\right)\end{matrix}\right.
b ਲਈ ਹਲ ਕਰੋ (ਜਟਿਲ ਹੱਲ)
\left\{\begin{matrix}\\b=-a\left(x+1\right)\text{, }&\text{unconditionally}\\b\in \mathrm{C}\text{, }&x=1\end{matrix}\right.
a ਲਈ ਹਲ ਕਰੋ
\left\{\begin{matrix}a=-\frac{b}{x+1}\text{, }&x\neq -1\\a\in \mathrm{R}\text{, }&x=1\text{ or }\left(b=0\text{ and }x=-1\right)\end{matrix}\right.
b ਲਈ ਹਲ ਕਰੋ
\left\{\begin{matrix}\\b=-a\left(x+1\right)\text{, }&\text{unconditionally}\\b\in \mathrm{R}\text{, }&x=1\end{matrix}\right.
ਗ੍ਰਾਫ
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
ax^{2}-a=b-bx
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ a ਨੂੰ ਘਟਾ ਦਿਓ।
\left(x^{2}-1\right)a=b-bx
a ਵਾਲੀਆਂ ਸਾਰੀਆਂ ਸੰਖਿਆਵਾਂ ਨੂੰ ਮਿਲਾਓ।
\frac{\left(x^{2}-1\right)a}{x^{2}-1}=\frac{b-bx}{x^{2}-1}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ x^{2}-1 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
a=\frac{b-bx}{x^{2}-1}
x^{2}-1 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ x^{2}-1 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
a=-\frac{b}{x+1}
b-bx ਨੂੰ x^{2}-1 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
a+b-bx=ax^{2}
ਪਾਸਿਆਂ ਨੂੰ ਸਵੈਪ ਕਰੋ ਤਾਂ ਜੋ ਸਾਰੇ ਵੇਰੀਏਬਲ ਟਰਮ ਖੱਬੇ ਪਾਸੇ ਉੱਤੇ ਹੋਣ।
b-bx=ax^{2}-a
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ a ਨੂੰ ਘਟਾ ਦਿਓ।
\left(1-x\right)b=ax^{2}-a
b ਵਾਲੀਆਂ ਸਾਰੀਆਂ ਸੰਖਿਆਵਾਂ ਨੂੰ ਮਿਲਾਓ।
\frac{\left(1-x\right)b}{1-x}=\frac{a\left(x^{2}-1\right)}{1-x}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 1-x ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
b=\frac{a\left(x^{2}-1\right)}{1-x}
1-x ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ 1-x ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
b=-a\left(x+1\right)
a\left(x^{2}-1\right) ਨੂੰ 1-x ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
ax^{2}-a=b-bx
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ a ਨੂੰ ਘਟਾ ਦਿਓ।
\left(x^{2}-1\right)a=b-bx
a ਵਾਲੀਆਂ ਸਾਰੀਆਂ ਸੰਖਿਆਵਾਂ ਨੂੰ ਮਿਲਾਓ।
\frac{\left(x^{2}-1\right)a}{x^{2}-1}=\frac{b-bx}{x^{2}-1}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ x^{2}-1 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
a=\frac{b-bx}{x^{2}-1}
x^{2}-1 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ x^{2}-1 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
a=-\frac{b}{x+1}
b-bx ਨੂੰ x^{2}-1 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
a+b-bx=ax^{2}
ਪਾਸਿਆਂ ਨੂੰ ਸਵੈਪ ਕਰੋ ਤਾਂ ਜੋ ਸਾਰੇ ਵੇਰੀਏਬਲ ਟਰਮ ਖੱਬੇ ਪਾਸੇ ਉੱਤੇ ਹੋਣ।
b-bx=ax^{2}-a
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ a ਨੂੰ ਘਟਾ ਦਿਓ।
\left(1-x\right)b=ax^{2}-a
b ਵਾਲੀਆਂ ਸਾਰੀਆਂ ਸੰਖਿਆਵਾਂ ਨੂੰ ਮਿਲਾਓ।
\frac{\left(1-x\right)b}{1-x}=\frac{a\left(x^{2}-1\right)}{1-x}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 1-x ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
b=\frac{a\left(x^{2}-1\right)}{1-x}
1-x ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ 1-x ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
b=-a\left(x+1\right)
a\left(x^{2}-1\right) ਨੂੰ 1-x ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}