ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
a ਲਈ ਹਲ ਕਰੋ
Tick mark Image

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

a+b=-8 ab=12
ਸਮੀਕਰਨ ਨੂੰ ਹੱਲ ਕਰਨ ਲਈ, a^{2}+\left(a+b\right)a+ab=\left(a+a\right)\left(a+b\right) ਸੂਤਰ ਦੀ ਵਰਤੋਂ ਕਰਕੇ a^{2}-8a+12 ਦਾ ਫੈਕਟਰ ਬਣਾਓ। a ਅਤੇ b ਨੂੰ ਕੱਢਣ ਲਈ, ਹੱਲ ਕੀਤੇ ਜਾਣ ਵਾਲੇ ਸਿਸਟਮ ਨੂੰ ਸੈਟਅੱਪ ਕਰੋ।
-1,-12 -2,-6 -3,-4
ਕਿਉਂਕਿ ab ਪਾਜ਼ੇਟਿਵ ਹੈ, a ਅਤੇ b ਦਾ ਸਮਾਨ ਚਿੰਨ੍ਹ ਹੁੰਦਾ ਹੈ। ਕਿਉਂਕਿ a+b ਨੈਗੇਟਿਵ ਹੈ, a ਅਤੇ b ਦੋਵੇਂ ਪਾਜ਼ੇਟਿਵ ਹੁੰਦੇ ਹਨ। ਅਜਿਹੇ ਸਾਰੇ ਪੂਰਣ ਅੰਕ ਜੋੜਿਆਂ ਦੀ ਸੂਚੀ ਬਣਾਓ ਜੋ 12 ਪ੍ਰੌਡਕਟ ਦਿੰਦੇ ਹਨ।
-1-12=-13 -2-6=-8 -3-4=-7
ਹਰ ਜੋੜੇ ਲਈ ਕੁੱਲ ਜੋੜ ਦਾ ਹਿਸਾਬ ਲਗਾਓ।
a=-6 b=-2
ਹੱਲ ਅਜਿਹਾ ਜੋੜਾ ਹੁੰਦਾ ਹੈ, ਜੋ -8 ਦਾ ਜੋੜ ਦਿੰਦਾ ਹੈ।
\left(a-6\right)\left(a-2\right)
ਹਾਸਲ ਕੀਤੀਆਂ ਵੈਲਯੂਜ਼ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਫੈਕਟਰ ਵਾਲੀ ਅਭਿਵਿਅਕਤੀ \left(a+a\right)\left(a+b\right) ਨੂੰ ਦੁਬਾਰਾ ਲਿਖੋ।
a=6 a=2
ਸਮੀਕਰਨਾਂ ਦੇ ਹੱਲ ਕੱਢਣ ਲਈ, a-6=0 ਅਤੇ a-2=0 ਨੂੰ ਹੱਲ ਕਰੋ।
a+b=-8 ab=1\times 12=12
ਸਮੀਕਰਨ ਨੂੰ ਹੱਲ ਕਰਨ ਲਈ, ਸਮੂਹ ਬਣਾ ਕੇ ਖੱਬੇ ਪਾਸੇ ਦਾ ਫੈਕਟਰ ਕੱਢੋ। ਪਹਿਲਾਂ, ਖੱਬੇ ਪਾਸੇ ਵਾਲੇ ਨੂੰ a^{2}+aa+ba+12 ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖਣ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ। a ਅਤੇ b ਨੂੰ ਕੱਢਣ ਲਈ, ਹੱਲ ਕੀਤੇ ਜਾਣ ਵਾਲੇ ਸਿਸਟਮ ਨੂੰ ਸੈਟਅੱਪ ਕਰੋ।
-1,-12 -2,-6 -3,-4
ਕਿਉਂਕਿ ab ਪਾਜ਼ੇਟਿਵ ਹੈ, a ਅਤੇ b ਦਾ ਸਮਾਨ ਚਿੰਨ੍ਹ ਹੁੰਦਾ ਹੈ। ਕਿਉਂਕਿ a+b ਨੈਗੇਟਿਵ ਹੈ, a ਅਤੇ b ਦੋਵੇਂ ਪਾਜ਼ੇਟਿਵ ਹੁੰਦੇ ਹਨ। ਅਜਿਹੇ ਸਾਰੇ ਪੂਰਣ ਅੰਕ ਜੋੜਿਆਂ ਦੀ ਸੂਚੀ ਬਣਾਓ ਜੋ 12 ਪ੍ਰੌਡਕਟ ਦਿੰਦੇ ਹਨ।
-1-12=-13 -2-6=-8 -3-4=-7
ਹਰ ਜੋੜੇ ਲਈ ਕੁੱਲ ਜੋੜ ਦਾ ਹਿਸਾਬ ਲਗਾਓ।
a=-6 b=-2
ਹੱਲ ਅਜਿਹਾ ਜੋੜਾ ਹੁੰਦਾ ਹੈ, ਜੋ -8 ਦਾ ਜੋੜ ਦਿੰਦਾ ਹੈ।
\left(a^{2}-6a\right)+\left(-2a+12\right)
a^{2}-8a+12 ਨੂੰ \left(a^{2}-6a\right)+\left(-2a+12\right) ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖੋ।
a\left(a-6\right)-2\left(a-6\right)
ਪਹਿਲੇ ਸਮੂਹ ਵਿੱਚ a ਦਾ ਅਤੇ ਦੂਜੇ ਵਿੱਚ -2 ਦਾ ਫੈਕਟਰ ਬਣਾਓ।
\left(a-6\right)\left(a-2\right)
ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੌਪਰਟੀ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਕੋਮਨ ਟਰਮ a-6 ਦਾ ਫੈਕਟਰ ਕੱਢੋ।
a=6 a=2
ਸਮੀਕਰਨਾਂ ਦੇ ਹੱਲ ਕੱਢਣ ਲਈ, a-6=0 ਅਤੇ a-2=0 ਨੂੰ ਹੱਲ ਕਰੋ।
a^{2}-8a+12=0
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
a=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 12}}{2}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 1 ਨੂੰ a ਲਈ, -8 ਨੂੰ b ਲਈ, ਅਤੇ 12 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
a=\frac{-\left(-8\right)±\sqrt{64-4\times 12}}{2}
-8 ਦਾ ਵਰਗ ਕਰੋ।
a=\frac{-\left(-8\right)±\sqrt{64-48}}{2}
-4 ਨੂੰ 12 ਵਾਰ ਗੁਣਾ ਕਰੋ।
a=\frac{-\left(-8\right)±\sqrt{16}}{2}
64 ਨੂੰ -48 ਵਿੱਚ ਜੋੜੋ।
a=\frac{-\left(-8\right)±4}{2}
16 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
a=\frac{8±4}{2}
-8 ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ 8 ਹੈ।
a=\frac{12}{2}
ਹੁਣ, ਸਮੀਕਰਨ a=\frac{8±4}{2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। 8 ਨੂੰ 4 ਵਿੱਚ ਜੋੜੋ।
a=6
12 ਨੂੰ 2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
a=\frac{4}{2}
ਹੁਣ, ਸਮੀਕਰਨ a=\frac{8±4}{2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। 8 ਵਿੱਚੋਂ 4 ਨੂੰ ਘਟਾਓ।
a=2
4 ਨੂੰ 2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
a=6 a=2
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
a^{2}-8a+12=0
ਇਹੋ ਜਿਹੇ ਵਰਗਾਕਾਰ ਸਮੀਕਰਨਾਂ ਨੂੰ ਵਰਗ ਪੂਰਾ ਕਰਕੇ ਹਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਵਰਗ ਨੂੰ ਪੂਰਾ ਕਰਨ ਲਈ, ਸਮੀਕਰਨ ਦਾ ਪਹਿਲੇ x^{2}+bx=c ਦੇ ਫਾਰਮ ਵਿੱਚ ਹੋਣਾ ਲਾਜ਼ਮੀ ਹੈ।
a^{2}-8a+12-12=-12
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 12 ਨੂੰ ਘਟਾਓ।
a^{2}-8a=-12
12 ਨੂੰ ਆਪਣੇ-ਆਪ ਵਿੱਚੋਂ ਘਟਾ ਕੇ 0 ਬੱਚਦਾ ਹੈ।
a^{2}-8a+\left(-4\right)^{2}=-12+\left(-4\right)^{2}
-8, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ -4 ਨਿਕਲੇ। ਫੇਰ, -4 ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
a^{2}-8a+16=-12+16
-4 ਦਾ ਵਰਗ ਕਰੋ।
a^{2}-8a+16=4
-12 ਨੂੰ 16 ਵਿੱਚ ਜੋੜੋ।
\left(a-4\right)^{2}=4
ਫੈਕਟਰ a^{2}-8a+16। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(a-4\right)^{2}}=\sqrt{4}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
a-4=2 a-4=-2
ਸਪਸ਼ਟ ਕਰੋ।
a=6 a=2
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 4 ਨੂੰ ਜੋੜੋ।