ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
a ਲਈ ਹਲ ਕਰੋ
Tick mark Image

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

a^{2}-7a-a=20
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ a ਨੂੰ ਘਟਾ ਦਿਓ।
a^{2}-8a=20
-8a ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -7a ਅਤੇ -a ਨੂੰ ਮਿਲਾਓ।
a^{2}-8a-20=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 20 ਨੂੰ ਘਟਾ ਦਿਓ।
a+b=-8 ab=-20
ਸਮੀਕਰਨ ਨੂੰ ਹੱਲ ਕਰਨ ਲਈ, a^{2}+\left(a+b\right)a+ab=\left(a+a\right)\left(a+b\right) ਸੂਤਰ ਦੀ ਵਰਤੋਂ ਕਰਕੇ a^{2}-8a-20 ਦਾ ਫੈਕਟਰ ਬਣਾਓ। a ਅਤੇ b ਨੂੰ ਕੱਢਣ ਲਈ, ਹੱਲ ਕੀਤੇ ਜਾਣ ਵਾਲੇ ਸਿਸਟਮ ਨੂੰ ਸੈਟਅੱਪ ਕਰੋ।
1,-20 2,-10 4,-5
ਕਿਉਂਕਿ ab ਨੈਗੇਟਿਵ ਹੈ, a ਅਤੇ b ਦੇ ਵਿਪਰੀਤ ਚਿੰਨ੍ਹ ਹੁੰਦੇ ਹਨ। ਕਿਉਂਕਿ a+b ਨੈਗੇਟਿਵ ਹੈ, ਨੈਗੇਟਿਵ ਨੰਬਰ ਦੀ ਪਾਜ਼ੇਟਿਵ ਨਾਲੋਂ ਵੱਡੀ ਐਬਸੋਲਿਉਟ ਵੈਲਯੂ ਹੁੰਦੀ ਹੈ। ਅਜਿਹੇ ਸਾਰੇ ਪੂਰਣ ਅੰਕ ਜੋੜਿਆਂ ਦੀ ਸੂਚੀ ਬਣਾਓ ਜੋ -20 ਪ੍ਰੌਡਕਟ ਦਿੰਦੇ ਹਨ।
1-20=-19 2-10=-8 4-5=-1
ਹਰ ਜੋੜੇ ਲਈ ਕੁੱਲ ਜੋੜ ਦਾ ਹਿਸਾਬ ਲਗਾਓ।
a=-10 b=2
ਹੱਲ ਅਜਿਹਾ ਜੋੜਾ ਹੁੰਦਾ ਹੈ, ਜੋ -8 ਦਾ ਜੋੜ ਦਿੰਦਾ ਹੈ।
\left(a-10\right)\left(a+2\right)
ਹਾਸਲ ਕੀਤੀਆਂ ਵੈਲਯੂਜ਼ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਫੈਕਟਰ ਵਾਲੀ ਅਭਿਵਿਅਕਤੀ \left(a+a\right)\left(a+b\right) ਨੂੰ ਦੁਬਾਰਾ ਲਿਖੋ।
a=10 a=-2
ਸਮੀਕਰਨਾਂ ਦੇ ਹੱਲ ਕੱਢਣ ਲਈ, a-10=0 ਅਤੇ a+2=0 ਨੂੰ ਹੱਲ ਕਰੋ।
a^{2}-7a-a=20
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ a ਨੂੰ ਘਟਾ ਦਿਓ।
a^{2}-8a=20
-8a ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -7a ਅਤੇ -a ਨੂੰ ਮਿਲਾਓ।
a^{2}-8a-20=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 20 ਨੂੰ ਘਟਾ ਦਿਓ।
a+b=-8 ab=1\left(-20\right)=-20
ਸਮੀਕਰਨ ਨੂੰ ਹੱਲ ਕਰਨ ਲਈ, ਸਮੂਹ ਬਣਾ ਕੇ ਖੱਬੇ ਪਾਸੇ ਦਾ ਫੈਕਟਰ ਕੱਢੋ। ਪਹਿਲਾਂ, ਖੱਬੇ ਪਾਸੇ ਵਾਲੇ ਨੂੰ a^{2}+aa+ba-20 ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖਣ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ। a ਅਤੇ b ਨੂੰ ਕੱਢਣ ਲਈ, ਹੱਲ ਕੀਤੇ ਜਾਣ ਵਾਲੇ ਸਿਸਟਮ ਨੂੰ ਸੈਟਅੱਪ ਕਰੋ।
1,-20 2,-10 4,-5
ਕਿਉਂਕਿ ab ਨੈਗੇਟਿਵ ਹੈ, a ਅਤੇ b ਦੇ ਵਿਪਰੀਤ ਚਿੰਨ੍ਹ ਹੁੰਦੇ ਹਨ। ਕਿਉਂਕਿ a+b ਨੈਗੇਟਿਵ ਹੈ, ਨੈਗੇਟਿਵ ਨੰਬਰ ਦੀ ਪਾਜ਼ੇਟਿਵ ਨਾਲੋਂ ਵੱਡੀ ਐਬਸੋਲਿਉਟ ਵੈਲਯੂ ਹੁੰਦੀ ਹੈ। ਅਜਿਹੇ ਸਾਰੇ ਪੂਰਣ ਅੰਕ ਜੋੜਿਆਂ ਦੀ ਸੂਚੀ ਬਣਾਓ ਜੋ -20 ਪ੍ਰੌਡਕਟ ਦਿੰਦੇ ਹਨ।
1-20=-19 2-10=-8 4-5=-1
ਹਰ ਜੋੜੇ ਲਈ ਕੁੱਲ ਜੋੜ ਦਾ ਹਿਸਾਬ ਲਗਾਓ।
a=-10 b=2
ਹੱਲ ਅਜਿਹਾ ਜੋੜਾ ਹੁੰਦਾ ਹੈ, ਜੋ -8 ਦਾ ਜੋੜ ਦਿੰਦਾ ਹੈ।
\left(a^{2}-10a\right)+\left(2a-20\right)
a^{2}-8a-20 ਨੂੰ \left(a^{2}-10a\right)+\left(2a-20\right) ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖੋ।
a\left(a-10\right)+2\left(a-10\right)
ਪਹਿਲੇ ਸਮੂਹ ਵਿੱਚ a ਦਾ ਅਤੇ ਦੂਜੇ ਵਿੱਚ 2 ਦਾ ਫੈਕਟਰ ਬਣਾਓ।
\left(a-10\right)\left(a+2\right)
ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੌਪਰਟੀ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਕੋਮਨ ਟਰਮ a-10 ਦਾ ਫੈਕਟਰ ਕੱਢੋ।
a=10 a=-2
ਸਮੀਕਰਨਾਂ ਦੇ ਹੱਲ ਕੱਢਣ ਲਈ, a-10=0 ਅਤੇ a+2=0 ਨੂੰ ਹੱਲ ਕਰੋ।
a^{2}-7a-a=20
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ a ਨੂੰ ਘਟਾ ਦਿਓ।
a^{2}-8a=20
-8a ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -7a ਅਤੇ -a ਨੂੰ ਮਿਲਾਓ।
a^{2}-8a-20=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 20 ਨੂੰ ਘਟਾ ਦਿਓ।
a=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\left(-20\right)}}{2}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 1 ਨੂੰ a ਲਈ, -8 ਨੂੰ b ਲਈ, ਅਤੇ -20 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
a=\frac{-\left(-8\right)±\sqrt{64-4\left(-20\right)}}{2}
-8 ਦਾ ਵਰਗ ਕਰੋ।
a=\frac{-\left(-8\right)±\sqrt{64+80}}{2}
-4 ਨੂੰ -20 ਵਾਰ ਗੁਣਾ ਕਰੋ।
a=\frac{-\left(-8\right)±\sqrt{144}}{2}
64 ਨੂੰ 80 ਵਿੱਚ ਜੋੜੋ।
a=\frac{-\left(-8\right)±12}{2}
144 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
a=\frac{8±12}{2}
-8 ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ 8 ਹੈ।
a=\frac{20}{2}
ਹੁਣ, ਸਮੀਕਰਨ a=\frac{8±12}{2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। 8 ਨੂੰ 12 ਵਿੱਚ ਜੋੜੋ।
a=10
20 ਨੂੰ 2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
a=-\frac{4}{2}
ਹੁਣ, ਸਮੀਕਰਨ a=\frac{8±12}{2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। 8 ਵਿੱਚੋਂ 12 ਨੂੰ ਘਟਾਓ।
a=-2
-4 ਨੂੰ 2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
a=10 a=-2
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
a^{2}-7a-a=20
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ a ਨੂੰ ਘਟਾ ਦਿਓ।
a^{2}-8a=20
-8a ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -7a ਅਤੇ -a ਨੂੰ ਮਿਲਾਓ।
a^{2}-8a+\left(-4\right)^{2}=20+\left(-4\right)^{2}
-8, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ -4 ਨਿਕਲੇ। ਫੇਰ, -4 ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
a^{2}-8a+16=20+16
-4 ਦਾ ਵਰਗ ਕਰੋ।
a^{2}-8a+16=36
20 ਨੂੰ 16 ਵਿੱਚ ਜੋੜੋ।
\left(a-4\right)^{2}=36
ਫੈਕਟਰ a^{2}-8a+16। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(a-4\right)^{2}}=\sqrt{36}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
a-4=6 a-4=-6
ਸਪਸ਼ਟ ਕਰੋ।
a=10 a=-2
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 4 ਨੂੰ ਜੋੜੋ।