ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
ਫੈਕਟਰ
Tick mark Image
ਮੁਲਾਂਕਣ ਕਰੋ
Tick mark Image

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

a^{2}-2a-2=0
ਦੋ-ਘਾਤੀ ਪੋਲੀਨੋਮੀਅਲ ਦੇ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ਟ੍ਰਾਂਸਫੋਰਮੇਸ਼ਨ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਫੈਕਟਰ ਬਣਾਏ ਜਾ ਸਕਦੇ ਹਨ, ਜਿੱਥੇ x_{1} ਅਤੇ x_{2} ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ ax^{2}+bx+c=0 ਦੇ ਹੱਲ ਹੁੰਦੇ ਹਨ।
a=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-2\right)}}{2}
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
a=\frac{-\left(-2\right)±\sqrt{4-4\left(-2\right)}}{2}
-2 ਦਾ ਵਰਗ ਕਰੋ।
a=\frac{-\left(-2\right)±\sqrt{4+8}}{2}
-4 ਨੂੰ -2 ਵਾਰ ਗੁਣਾ ਕਰੋ।
a=\frac{-\left(-2\right)±\sqrt{12}}{2}
4 ਨੂੰ 8 ਵਿੱਚ ਜੋੜੋ।
a=\frac{-\left(-2\right)±2\sqrt{3}}{2}
12 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
a=\frac{2±2\sqrt{3}}{2}
-2 ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ 2 ਹੈ।
a=\frac{2\sqrt{3}+2}{2}
ਹੁਣ, ਸਮੀਕਰਨ a=\frac{2±2\sqrt{3}}{2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। 2 ਨੂੰ 2\sqrt{3} ਵਿੱਚ ਜੋੜੋ।
a=\sqrt{3}+1
2+2\sqrt{3} ਨੂੰ 2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
a=\frac{2-2\sqrt{3}}{2}
ਹੁਣ, ਸਮੀਕਰਨ a=\frac{2±2\sqrt{3}}{2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। 2 ਵਿੱਚੋਂ 2\sqrt{3} ਨੂੰ ਘਟਾਓ।
a=1-\sqrt{3}
2-2\sqrt{3} ਨੂੰ 2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
a^{2}-2a-2=\left(a-\left(\sqrt{3}+1\right)\right)\left(a-\left(1-\sqrt{3}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਮੂਲ ਵਿਅੰਜਕ ਦੇ ਗੁਣਨ ਖੰਡ ਬਣਾਓ। x_{1} ਲਈ 1+\sqrt{3}ਅਤੇ x_{2} ਲਈ 1-\sqrt{3} ਬਦਲ ਹੈ।