a ਲਈ ਹਲ ਕਰੋ
a=-15
a=7
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
a^{2}+8a-9-96=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 96 ਨੂੰ ਘਟਾ ਦਿਓ।
a^{2}+8a-105=0
-105 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -9 ਵਿੱਚੋਂ 96 ਨੂੰ ਘਟਾ ਦਿਓ।
a+b=8 ab=-105
ਸਮੀਕਰਨ ਨੂੰ ਹੱਲ ਕਰਨ ਲਈ, a^{2}+\left(a+b\right)a+ab=\left(a+a\right)\left(a+b\right) ਸੂਤਰ ਦੀ ਵਰਤੋਂ ਕਰਕੇ a^{2}+8a-105 ਦਾ ਫੈਕਟਰ ਬਣਾਓ। a ਅਤੇ b ਨੂੰ ਕੱਢਣ ਲਈ, ਹੱਲ ਕੀਤੇ ਜਾਣ ਵਾਲੇ ਸਿਸਟਮ ਨੂੰ ਸੈਟਅੱਪ ਕਰੋ।
-1,105 -3,35 -5,21 -7,15
ਕਿਉਂਕਿ ab ਨੈਗੇਟਿਵ ਹੈ, a ਅਤੇ b ਦੇ ਵਿਪਰੀਤ ਚਿੰਨ੍ਹ ਹੁੰਦੇ ਹਨ। ਕਿਉਂਕਿ a+b ਪਾਜ਼ੇਟਿਵ ਹੈ, ਪਾਜ਼ੇਟਿਵ ਨੰਬਰ ਦੀ ਨੈਗੇਟਿਵ ਨਾਲੋਂ ਵੱਡੀ ਐਬਸੋਲਿਉਟ ਵੈਲਯੂ ਹੁੰਦੀ ਹੈ। ਅਜਿਹੇ ਸਾਰੇ ਪੂਰਣ ਅੰਕ ਜੋੜਿਆਂ ਦੀ ਸੂਚੀ ਬਣਾਓ ਜੋ -105 ਪ੍ਰੌਡਕਟ ਦਿੰਦੇ ਹਨ।
-1+105=104 -3+35=32 -5+21=16 -7+15=8
ਹਰ ਜੋੜੇ ਲਈ ਕੁੱਲ ਜੋੜ ਦਾ ਹਿਸਾਬ ਲਗਾਓ।
a=-7 b=15
ਹੱਲ ਅਜਿਹਾ ਜੋੜਾ ਹੁੰਦਾ ਹੈ, ਜੋ 8 ਦਾ ਜੋੜ ਦਿੰਦਾ ਹੈ।
\left(a-7\right)\left(a+15\right)
ਹਾਸਲ ਕੀਤੀਆਂ ਵੈਲਯੂਜ਼ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਫੈਕਟਰ ਵਾਲੀ ਅਭਿਵਿਅਕਤੀ \left(a+a\right)\left(a+b\right) ਨੂੰ ਦੁਬਾਰਾ ਲਿਖੋ।
a=7 a=-15
ਸਮੀਕਰਨਾਂ ਦੇ ਹੱਲ ਕੱਢਣ ਲਈ, a-7=0 ਅਤੇ a+15=0 ਨੂੰ ਹੱਲ ਕਰੋ।
a^{2}+8a-9-96=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 96 ਨੂੰ ਘਟਾ ਦਿਓ।
a^{2}+8a-105=0
-105 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -9 ਵਿੱਚੋਂ 96 ਨੂੰ ਘਟਾ ਦਿਓ।
a+b=8 ab=1\left(-105\right)=-105
ਸਮੀਕਰਨ ਨੂੰ ਹੱਲ ਕਰਨ ਲਈ, ਸਮੂਹ ਬਣਾ ਕੇ ਖੱਬੇ ਪਾਸੇ ਦਾ ਫੈਕਟਰ ਕੱਢੋ। ਪਹਿਲਾਂ, ਖੱਬੇ ਪਾਸੇ ਵਾਲੇ ਨੂੰ a^{2}+aa+ba-105 ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖਣ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ। a ਅਤੇ b ਨੂੰ ਕੱਢਣ ਲਈ, ਹੱਲ ਕੀਤੇ ਜਾਣ ਵਾਲੇ ਸਿਸਟਮ ਨੂੰ ਸੈਟਅੱਪ ਕਰੋ।
-1,105 -3,35 -5,21 -7,15
ਕਿਉਂਕਿ ab ਨੈਗੇਟਿਵ ਹੈ, a ਅਤੇ b ਦੇ ਵਿਪਰੀਤ ਚਿੰਨ੍ਹ ਹੁੰਦੇ ਹਨ। ਕਿਉਂਕਿ a+b ਪਾਜ਼ੇਟਿਵ ਹੈ, ਪਾਜ਼ੇਟਿਵ ਨੰਬਰ ਦੀ ਨੈਗੇਟਿਵ ਨਾਲੋਂ ਵੱਡੀ ਐਬਸੋਲਿਉਟ ਵੈਲਯੂ ਹੁੰਦੀ ਹੈ। ਅਜਿਹੇ ਸਾਰੇ ਪੂਰਣ ਅੰਕ ਜੋੜਿਆਂ ਦੀ ਸੂਚੀ ਬਣਾਓ ਜੋ -105 ਪ੍ਰੌਡਕਟ ਦਿੰਦੇ ਹਨ।
-1+105=104 -3+35=32 -5+21=16 -7+15=8
ਹਰ ਜੋੜੇ ਲਈ ਕੁੱਲ ਜੋੜ ਦਾ ਹਿਸਾਬ ਲਗਾਓ।
a=-7 b=15
ਹੱਲ ਅਜਿਹਾ ਜੋੜਾ ਹੁੰਦਾ ਹੈ, ਜੋ 8 ਦਾ ਜੋੜ ਦਿੰਦਾ ਹੈ।
\left(a^{2}-7a\right)+\left(15a-105\right)
a^{2}+8a-105 ਨੂੰ \left(a^{2}-7a\right)+\left(15a-105\right) ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖੋ।
a\left(a-7\right)+15\left(a-7\right)
ਪਹਿਲੇ ਸਮੂਹ ਵਿੱਚ a ਦਾ ਅਤੇ ਦੂਜੇ ਵਿੱਚ 15 ਦਾ ਫੈਕਟਰ ਬਣਾਓ।
\left(a-7\right)\left(a+15\right)
ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੌਪਰਟੀ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਕੋਮਨ ਟਰਮ a-7 ਦਾ ਫੈਕਟਰ ਕੱਢੋ।
a=7 a=-15
ਸਮੀਕਰਨਾਂ ਦੇ ਹੱਲ ਕੱਢਣ ਲਈ, a-7=0 ਅਤੇ a+15=0 ਨੂੰ ਹੱਲ ਕਰੋ।
a^{2}+8a-9=96
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
a^{2}+8a-9-96=96-96
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 96 ਨੂੰ ਘਟਾਓ।
a^{2}+8a-9-96=0
96 ਨੂੰ ਆਪਣੇ-ਆਪ ਵਿੱਚੋਂ ਘਟਾ ਕੇ 0 ਬੱਚਦਾ ਹੈ।
a^{2}+8a-105=0
-9 ਵਿੱਚੋਂ 96 ਨੂੰ ਘਟਾਓ।
a=\frac{-8±\sqrt{8^{2}-4\left(-105\right)}}{2}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 1 ਨੂੰ a ਲਈ, 8 ਨੂੰ b ਲਈ, ਅਤੇ -105 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
a=\frac{-8±\sqrt{64-4\left(-105\right)}}{2}
8 ਦਾ ਵਰਗ ਕਰੋ।
a=\frac{-8±\sqrt{64+420}}{2}
-4 ਨੂੰ -105 ਵਾਰ ਗੁਣਾ ਕਰੋ।
a=\frac{-8±\sqrt{484}}{2}
64 ਨੂੰ 420 ਵਿੱਚ ਜੋੜੋ।
a=\frac{-8±22}{2}
484 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
a=\frac{14}{2}
ਹੁਣ, ਸਮੀਕਰਨ a=\frac{-8±22}{2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। -8 ਨੂੰ 22 ਵਿੱਚ ਜੋੜੋ।
a=7
14 ਨੂੰ 2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
a=-\frac{30}{2}
ਹੁਣ, ਸਮੀਕਰਨ a=\frac{-8±22}{2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। -8 ਵਿੱਚੋਂ 22 ਨੂੰ ਘਟਾਓ।
a=-15
-30 ਨੂੰ 2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
a=7 a=-15
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
a^{2}+8a-9=96
ਇਹੋ ਜਿਹੇ ਵਰਗਾਕਾਰ ਸਮੀਕਰਨਾਂ ਨੂੰ ਵਰਗ ਪੂਰਾ ਕਰਕੇ ਹਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਵਰਗ ਨੂੰ ਪੂਰਾ ਕਰਨ ਲਈ, ਸਮੀਕਰਨ ਦਾ ਪਹਿਲੇ x^{2}+bx=c ਦੇ ਫਾਰਮ ਵਿੱਚ ਹੋਣਾ ਲਾਜ਼ਮੀ ਹੈ।
a^{2}+8a-9-\left(-9\right)=96-\left(-9\right)
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 9 ਨੂੰ ਜੋੜੋ।
a^{2}+8a=96-\left(-9\right)
-9 ਨੂੰ ਆਪਣੇ-ਆਪ ਵਿੱਚੋਂ ਘਟਾ ਕੇ 0 ਬੱਚਦਾ ਹੈ।
a^{2}+8a=105
96 ਵਿੱਚੋਂ -9 ਨੂੰ ਘਟਾਓ।
a^{2}+8a+4^{2}=105+4^{2}
8, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ 4 ਨਿਕਲੇ। ਫੇਰ, 4 ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
a^{2}+8a+16=105+16
4 ਦਾ ਵਰਗ ਕਰੋ।
a^{2}+8a+16=121
105 ਨੂੰ 16 ਵਿੱਚ ਜੋੜੋ।
\left(a+4\right)^{2}=121
ਫੈਕਟਰ a^{2}+8a+16। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(a+4\right)^{2}}=\sqrt{121}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
a+4=11 a+4=-11
ਸਪਸ਼ਟ ਕਰੋ।
a=7 a=-15
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 4 ਨੂੰ ਘਟਾਓ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}