a ਲਈ ਹਲ ਕਰੋ
a=\frac{1+\sqrt{23}i}{2}\approx 0.5+2.397915762i
a=\frac{-\sqrt{23}i+1}{2}\approx 0.5-2.397915762i
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
a^{2}+2-a=-4
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ a ਨੂੰ ਘਟਾ ਦਿਓ।
a^{2}+2-a+4=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 4 ਜੋੜੋ।
a^{2}+6-a=0
6 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 2 ਅਤੇ 4 ਨੂੰ ਜੋੜੋ।
a^{2}-a+6=0
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
a=\frac{-\left(-1\right)±\sqrt{1-4\times 6}}{2}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 1 ਨੂੰ a ਲਈ, -1 ਨੂੰ b ਲਈ, ਅਤੇ 6 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
a=\frac{-\left(-1\right)±\sqrt{1-24}}{2}
-4 ਨੂੰ 6 ਵਾਰ ਗੁਣਾ ਕਰੋ।
a=\frac{-\left(-1\right)±\sqrt{-23}}{2}
1 ਨੂੰ -24 ਵਿੱਚ ਜੋੜੋ।
a=\frac{-\left(-1\right)±\sqrt{23}i}{2}
-23 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
a=\frac{1±\sqrt{23}i}{2}
-1 ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ 1 ਹੈ।
a=\frac{1+\sqrt{23}i}{2}
ਹੁਣ, ਸਮੀਕਰਨ a=\frac{1±\sqrt{23}i}{2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। 1 ਨੂੰ i\sqrt{23} ਵਿੱਚ ਜੋੜੋ।
a=\frac{-\sqrt{23}i+1}{2}
ਹੁਣ, ਸਮੀਕਰਨ a=\frac{1±\sqrt{23}i}{2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। 1 ਵਿੱਚੋਂ i\sqrt{23} ਨੂੰ ਘਟਾਓ।
a=\frac{1+\sqrt{23}i}{2} a=\frac{-\sqrt{23}i+1}{2}
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
a^{2}+2-a=-4
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ a ਨੂੰ ਘਟਾ ਦਿਓ।
a^{2}-a=-4-2
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 2 ਨੂੰ ਘਟਾ ਦਿਓ।
a^{2}-a=-6
-6 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -4 ਵਿੱਚੋਂ 2 ਨੂੰ ਘਟਾ ਦਿਓ।
a^{2}-a+\left(-\frac{1}{2}\right)^{2}=-6+\left(-\frac{1}{2}\right)^{2}
-1, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ -\frac{1}{2} ਨਿਕਲੇ। ਫੇਰ, -\frac{1}{2} ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
a^{2}-a+\frac{1}{4}=-6+\frac{1}{4}
ਫ੍ਰੈਕਸ਼ਨ ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਦਾ ਵਰਗ ਕੱਢ ਕੇ -\frac{1}{2} ਦਾ ਵਰਗ ਕੱਢੋ।
a^{2}-a+\frac{1}{4}=-\frac{23}{4}
-6 ਨੂੰ \frac{1}{4} ਵਿੱਚ ਜੋੜੋ।
\left(a-\frac{1}{2}\right)^{2}=-\frac{23}{4}
ਫੈਕਟਰ a^{2}-a+\frac{1}{4}। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(a-\frac{1}{2}\right)^{2}}=\sqrt{-\frac{23}{4}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
a-\frac{1}{2}=\frac{\sqrt{23}i}{2} a-\frac{1}{2}=-\frac{\sqrt{23}i}{2}
ਸਪਸ਼ਟ ਕਰੋ।
a=\frac{1+\sqrt{23}i}{2} a=\frac{-\sqrt{23}i+1}{2}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ \frac{1}{2} ਨੂੰ ਜੋੜੋ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}