X_1 ਲਈ ਹਲ ਕਰੋ
\left\{\begin{matrix}X_{1}=-\frac{\epsilon +\beta _{1}+Y_{2}\beta _{2}-Y_{1}}{\beta _{3}}\text{, }&\beta _{3}\neq 0\\X_{1}\in \mathrm{R}\text{, }&Y_{1}=Y_{2}\beta _{2}+\beta _{1}+\epsilon \text{ and }\beta _{3}=0\end{matrix}\right.
Y_1 ਲਈ ਹਲ ਕਰੋ
Y_{1}=X_{1}\beta _{3}+Y_{2}\beta _{2}+\beta _{1}+\epsilon
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
\beta _{1}+\beta _{2}Y_{2}+\beta _{3}X_{1}+\epsilon =Y_{1}
ਪਾਸਿਆਂ ਨੂੰ ਸਵੈਪ ਕਰੋ ਤਾਂ ਜੋ ਸਾਰੇ ਵੇਰੀਏਬਲ ਟਰਮ ਖੱਬੇ ਪਾਸੇ ਉੱਤੇ ਹੋਣ।
\beta _{2}Y_{2}+\beta _{3}X_{1}+\epsilon =Y_{1}-\beta _{1}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ \beta _{1} ਨੂੰ ਘਟਾ ਦਿਓ।
\beta _{3}X_{1}+\epsilon =Y_{1}-\beta _{1}-\beta _{2}Y_{2}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ \beta _{2}Y_{2} ਨੂੰ ਘਟਾ ਦਿਓ।
\beta _{3}X_{1}=Y_{1}-\beta _{1}-\beta _{2}Y_{2}-\epsilon
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ \epsilon ਨੂੰ ਘਟਾ ਦਿਓ।
\beta _{3}X_{1}=Y_{1}-Y_{2}\beta _{2}-\beta _{1}-\epsilon
ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ।
\frac{\beta _{3}X_{1}}{\beta _{3}}=\frac{Y_{1}-Y_{2}\beta _{2}-\beta _{1}-\epsilon }{\beta _{3}}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ \beta _{3} ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
X_{1}=\frac{Y_{1}-Y_{2}\beta _{2}-\beta _{1}-\epsilon }{\beta _{3}}
\beta _{3} ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ \beta _{3} ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}