ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
R ਲਈ ਹਲ ਕਰੋ
Tick mark Image

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

\left(R-2\right)\left(R+2\right)=0
R^{2}-4 'ਤੇ ਵਿਚਾਰ ਕਰੋ। R^{2}-4 ਨੂੰ R^{2}-2^{2} ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖੋ। ਵਰਗਾਂ ਦੇ ਅੰਤਰ ਨੂੰ ਇਸ ਨਿਯਮ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਫੈਕਟਰ ਵਿੱਚ ਵੰਡਿਆ ਜਾ ਸਕਦਾ ਹੈ: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right)।
R=2 R=-2
ਸਮੀਕਰਨਾਂ ਦੇ ਹੱਲ ਕੱਢਣ ਲਈ, R-2=0 ਅਤੇ R+2=0 ਨੂੰ ਹੱਲ ਕਰੋ।
R^{2}=4
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 4 ਜੋੜੋ। ਸਿਫਰ ਵਿੱਚ ਜੋੜੀ ਗਈ ਰਕਮ ਦਾ ਜਵਾਬ ਉਹੀ ਰਕਮ ਹੁੰਦੀ ਹੈ।
R=2 R=-2
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
R^{2}-4=0
ਇੱਕ x^{2} ਸੰਖਿਆ ਦੇ ਨਾਲ, ਪਰ ਜਿਸ ਦੇ ਨਾਲ ਕੋਈ x ਸੰਖਿਆ ਨਹੀਂ ਹੁੰਦੀ ਹੈ, ਅਜਿਹੇ ਵਰਗਾਕਾਰ ਸਮੀਕਰਨਾਂ ਨੂੰ ਹਾਲੇ ਤੱਕ ਵਰਗਾਕਾਰ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਦੇ ਨਾਲ ਹਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ, ਇੱਕ ਵਾਰ ਇਹਨਾਂ ਨੂੰ ਸਟੈਂਡਰਡ ਫਾਰਮ: ax^{2}+bx+c=0 ਵਿੱਚ ਪਾ ਦਿੱਤਾ ਜਾਵੇ।
R=\frac{0±\sqrt{0^{2}-4\left(-4\right)}}{2}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 1 ਨੂੰ a ਲਈ, 0 ਨੂੰ b ਲਈ, ਅਤੇ -4 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
R=\frac{0±\sqrt{-4\left(-4\right)}}{2}
0 ਦਾ ਵਰਗ ਕਰੋ।
R=\frac{0±\sqrt{16}}{2}
-4 ਨੂੰ -4 ਵਾਰ ਗੁਣਾ ਕਰੋ।
R=\frac{0±4}{2}
16 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
R=2
ਹੁਣ, ਸਮੀਕਰਨ R=\frac{0±4}{2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। 4 ਨੂੰ 2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
R=-2
ਹੁਣ, ਸਮੀਕਰਨ R=\frac{0±4}{2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। -4 ਨੂੰ 2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
R=2 R=-2
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।