A ਲਈ ਹਲ ਕਰੋ
\left\{\begin{matrix}A=\frac{Q}{k\left(T_{2}-T_{1}\right)}\text{, }&T_{2}\neq T_{1}\text{ and }k\neq 0\\A\in \mathrm{R}\text{, }&\left(T_{2}=T_{1}\text{ or }k=0\right)\text{ and }Q=0\end{matrix}\right.
Q ਲਈ ਹਲ ਕਰੋ
Q=Ak\left(T_{2}-T_{1}\right)
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
Q=kAT_{2}-kAT_{1}
kA ਨੂੰ T_{2}-T_{1} ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
kAT_{2}-kAT_{1}=Q
ਪਾਸਿਆਂ ਨੂੰ ਸਵੈਪ ਕਰੋ ਤਾਂ ਜੋ ਸਾਰੇ ਵੇਰੀਏਬਲ ਟਰਮ ਖੱਬੇ ਪਾਸੇ ਉੱਤੇ ਹੋਣ।
\left(kT_{2}-kT_{1}\right)A=Q
A ਵਾਲੀਆਂ ਸਾਰੀਆਂ ਸੰਖਿਆਵਾਂ ਨੂੰ ਮਿਲਾਓ।
\left(T_{2}k-T_{1}k\right)A=Q
ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ।
\frac{\left(T_{2}k-T_{1}k\right)A}{T_{2}k-T_{1}k}=\frac{Q}{T_{2}k-T_{1}k}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ -T_{1}k+T_{2}k ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
A=\frac{Q}{T_{2}k-T_{1}k}
-T_{1}k+T_{2}k ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ -T_{1}k+T_{2}k ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
A=\frac{Q}{k\left(T_{2}-T_{1}\right)}
Q ਨੂੰ -T_{1}k+T_{2}k ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}