D ਲਈ ਹਲ ਕਰੋ
D=\frac{x}{2}-\frac{11}{6}+\frac{1}{2x}
x\neq 0
x ਲਈ ਹਲ ਕਰੋ (ਜਟਿਲ ਹੱਲ)
x=\frac{\sqrt{36D^{2}+132D+85}}{6}+D+\frac{11}{6}
x=-\frac{\sqrt{36D^{2}+132D+85}}{6}+D+\frac{11}{6}
x ਲਈ ਹਲ ਕਰੋ
x=\frac{\sqrt{36D^{2}+132D+85}}{6}+D+\frac{11}{6}
x=-\frac{\sqrt{36D^{2}+132D+85}}{6}+D+\frac{11}{6}\text{, }D\leq -\frac{17}{6}\text{ or }D\geq -\frac{5}{6}
ਗ੍ਰਾਫ
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
-10x-6Dx=x-3-3x^{2}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 3x^{2} ਨੂੰ ਘਟਾ ਦਿਓ।
-6Dx=x-3-3x^{2}+10x
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 10x ਜੋੜੋ।
-6Dx=11x-3-3x^{2}
11x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ x ਅਤੇ 10x ਨੂੰ ਮਿਲਾਓ।
\left(-6x\right)D=-3x^{2}+11x-3
ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ।
\frac{\left(-6x\right)D}{-6x}=\frac{-3x^{2}+11x-3}{-6x}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ -6x ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
D=\frac{-3x^{2}+11x-3}{-6x}
-6x ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ -6x ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
D=\frac{x}{2}-\frac{11}{6}+\frac{1}{2x}
11x-3-3x^{2} ਨੂੰ -6x ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}