H ਲਈ ਹਲ ਕਰੋ
H = \frac{11}{3} = 3\frac{2}{3} \approx 3.666666667
H ਸਪੁਰਦ ਕਰੋ
H≔\frac{11}{3}
ਕੁਇਜ਼
Linear Equation
5 ਪ੍ਰਸ਼ਨ ਇਸ ਵਰਗੇ ਹਨ:
H = \frac { 25 } { 21 } + \frac { 8 } { 7 } + \frac { 4 } { 3 } =
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
H=\frac{25}{21}+\frac{24}{21}+\frac{4}{3}
21 ਅਤੇ 7 ਦਾ ਸਭ ਤੋਂ ਛੋਟਾ ਆਮ ਗੁਣਕ 21 ਹੈ। \frac{25}{21} ਅਤੇ \frac{8}{7} ਨੂੰ 21 ਡਿਨੋਮਿਨੇਟਰ ਵਾਲੇ ਅੰਸ਼ ਵਿੱਚ ਬਦਲੋ।
H=\frac{25+24}{21}+\frac{4}{3}
ਕਿਉਂਕਿ \frac{25}{21} ਅਤੇ \frac{24}{21} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਜੋੜ ਕੇ ਇਹਨਾਂ ਨੂੰ ਜੋੜੋ।
H=\frac{49}{21}+\frac{4}{3}
49 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 25 ਅਤੇ 24 ਨੂੰ ਜੋੜੋ।
H=\frac{7}{3}+\frac{4}{3}
7 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{49}{21} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
H=\frac{7+4}{3}
ਕਿਉਂਕਿ \frac{7}{3} ਅਤੇ \frac{4}{3} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਜੋੜ ਕੇ ਇਹਨਾਂ ਨੂੰ ਜੋੜੋ।
H=\frac{11}{3}
11 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 7 ਅਤੇ 4 ਨੂੰ ਜੋੜੋ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}