A ਲਈ ਹਲ ਕਰੋ
A = \frac{17}{14} = 1\frac{3}{14} \approx 1.214285714
A ਸਪੁਰਦ ਕਰੋ
A≔\frac{17}{14}
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
A=\frac{3}{7}+\frac{1}{7}\left(\frac{10}{2}+\frac{1}{2}\right)
5 ਨੂੰ \frac{10}{2} ਅੰਸ਼ 'ਤੇ ਬਦਲੋ।
A=\frac{3}{7}+\frac{1}{7}\times \frac{10+1}{2}
ਕਿਉਂਕਿ \frac{10}{2} ਅਤੇ \frac{1}{2} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਜੋੜ ਕੇ ਇਹਨਾਂ ਨੂੰ ਜੋੜੋ।
A=\frac{3}{7}+\frac{1}{7}\times \frac{11}{2}
11 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 10 ਅਤੇ 1 ਨੂੰ ਜੋੜੋ।
A=\frac{3}{7}+\frac{1\times 11}{7\times 2}
ਨਿਉਮਰੇਟਰ ਟਾਇਮਸ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡਿਨੋਮੀਨੇਟਰ ਟਾਈਮਸ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ ਗੁਣਾ ਕਰਕੇ \frac{1}{7} ਟਾਈਮਸ \frac{11}{2} ਨੂੰ ਗੁਣਾ ਕਰੋ।
A=\frac{3}{7}+\frac{11}{14}
\frac{1\times 11}{7\times 2} ਫ੍ਰੈਕਸ਼ਨ ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
A=\frac{6}{14}+\frac{11}{14}
7 ਅਤੇ 14 ਦਾ ਸਭ ਤੋਂ ਛੋਟਾ ਆਮ ਗੁਣਕ 14 ਹੈ। \frac{3}{7} ਅਤੇ \frac{11}{14} ਨੂੰ 14 ਡਿਨੋਮਿਨੇਟਰ ਵਾਲੇ ਅੰਸ਼ ਵਿੱਚ ਬਦਲੋ।
A=\frac{6+11}{14}
ਕਿਉਂਕਿ \frac{6}{14} ਅਤੇ \frac{11}{14} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਜੋੜ ਕੇ ਇਹਨਾਂ ਨੂੰ ਜੋੜੋ।
A=\frac{17}{14}
17 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 6 ਅਤੇ 11 ਨੂੰ ਜੋੜੋ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}