ਮੁਲਾਂਕਣ ਕਰੋ
14x^{2}+29x-25
ਵਿਸਤਾਰ ਕਰੋ
14x^{2}+29x-25
ਗ੍ਰਾਫ
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
18x^{2}+9x-\left(2x-5\right)^{2}
9x ਨੂੰ 2x+1 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
18x^{2}+9x-\left(4x^{2}-20x+25\right)
\left(2x-5\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
18x^{2}+9x-4x^{2}+20x-25
4x^{2}-20x+25 ਦਾ ਵਿਪਰੀਤ ਪਤਾ ਲਗਾਉਣ ਲਈ, ਹਰ ਟਰਮ ਦੇ ਵਿਪਰੀਤ ਦਾ ਪਤਾ ਲਗਾਓ।
14x^{2}+9x+20x-25
14x^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 18x^{2} ਅਤੇ -4x^{2} ਨੂੰ ਮਿਲਾਓ।
14x^{2}+29x-25
29x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 9x ਅਤੇ 20x ਨੂੰ ਮਿਲਾਓ।
18x^{2}+9x-\left(2x-5\right)^{2}
9x ਨੂੰ 2x+1 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
18x^{2}+9x-\left(4x^{2}-20x+25\right)
\left(2x-5\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
18x^{2}+9x-4x^{2}+20x-25
4x^{2}-20x+25 ਦਾ ਵਿਪਰੀਤ ਪਤਾ ਲਗਾਉਣ ਲਈ, ਹਰ ਟਰਮ ਦੇ ਵਿਪਰੀਤ ਦਾ ਪਤਾ ਲਗਾਓ।
14x^{2}+9x+20x-25
14x^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 18x^{2} ਅਤੇ -4x^{2} ਨੂੰ ਮਿਲਾਓ।
14x^{2}+29x-25
29x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 9x ਅਤੇ 20x ਨੂੰ ਮਿਲਾਓ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}