ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
x ਲਈ ਹਲ ਕਰੋ
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

9x^{2}-12x-4=0
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 9\left(-4\right)}}{2\times 9}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 9 ਨੂੰ a ਲਈ, -12 ਨੂੰ b ਲਈ, ਅਤੇ -4 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-\left(-12\right)±\sqrt{144-4\times 9\left(-4\right)}}{2\times 9}
-12 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-\left(-12\right)±\sqrt{144-36\left(-4\right)}}{2\times 9}
-4 ਨੂੰ 9 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-12\right)±\sqrt{144+144}}{2\times 9}
-36 ਨੂੰ -4 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-12\right)±\sqrt{288}}{2\times 9}
144 ਨੂੰ 144 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-\left(-12\right)±12\sqrt{2}}{2\times 9}
288 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{12±12\sqrt{2}}{2\times 9}
-12 ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ 12 ਹੈ।
x=\frac{12±12\sqrt{2}}{18}
2 ਨੂੰ 9 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{12\sqrt{2}+12}{18}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{12±12\sqrt{2}}{18} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। 12 ਨੂੰ 12\sqrt{2} ਵਿੱਚ ਜੋੜੋ।
x=\frac{2\sqrt{2}+2}{3}
12+12\sqrt{2} ਨੂੰ 18 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{12-12\sqrt{2}}{18}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{12±12\sqrt{2}}{18} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। 12 ਵਿੱਚੋਂ 12\sqrt{2} ਨੂੰ ਘਟਾਓ।
x=\frac{2-2\sqrt{2}}{3}
12-12\sqrt{2} ਨੂੰ 18 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{2\sqrt{2}+2}{3} x=\frac{2-2\sqrt{2}}{3}
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
9x^{2}-12x-4=0
ਇਹੋ ਜਿਹੇ ਵਰਗਾਕਾਰ ਸਮੀਕਰਨਾਂ ਨੂੰ ਵਰਗ ਪੂਰਾ ਕਰਕੇ ਹਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਵਰਗ ਨੂੰ ਪੂਰਾ ਕਰਨ ਲਈ, ਸਮੀਕਰਨ ਦਾ ਪਹਿਲੇ x^{2}+bx=c ਦੇ ਫਾਰਮ ਵਿੱਚ ਹੋਣਾ ਲਾਜ਼ਮੀ ਹੈ।
9x^{2}-12x-4-\left(-4\right)=-\left(-4\right)
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 4 ਨੂੰ ਜੋੜੋ।
9x^{2}-12x=-\left(-4\right)
-4 ਨੂੰ ਆਪਣੇ-ਆਪ ਵਿੱਚੋਂ ਘਟਾ ਕੇ 0 ਬੱਚਦਾ ਹੈ।
9x^{2}-12x=4
0 ਵਿੱਚੋਂ -4 ਨੂੰ ਘਟਾਓ।
\frac{9x^{2}-12x}{9}=\frac{4}{9}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 9 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x^{2}+\left(-\frac{12}{9}\right)x=\frac{4}{9}
9 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ 9 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x^{2}-\frac{4}{3}x=\frac{4}{9}
3 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{-12}{9} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
x^{2}-\frac{4}{3}x+\left(-\frac{2}{3}\right)^{2}=\frac{4}{9}+\left(-\frac{2}{3}\right)^{2}
-\frac{4}{3}, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ -\frac{2}{3} ਨਿਕਲੇ। ਫੇਰ, -\frac{2}{3} ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}-\frac{4}{3}x+\frac{4}{9}=\frac{4+4}{9}
ਫ੍ਰੈਕਸ਼ਨ ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਦਾ ਵਰਗ ਕੱਢ ਕੇ -\frac{2}{3} ਦਾ ਵਰਗ ਕੱਢੋ।
x^{2}-\frac{4}{3}x+\frac{4}{9}=\frac{8}{9}
ਸਾਂਝਾ ਡਿਨੋਮੀਨੇਟਰ(ਹੇਠਲੀ ਸੰਖਿਆ) ਲੱਭ ਕੇ ਅਤੇ ਨਿਉਮਰੇਟਰਾਂ(ਉੱਤਲੀ ਸੰਖਿਆ) ਨੂੰ ਜੋੜ ਕੇ \frac{4}{9} ਨੂੰ \frac{4}{9} ਵਿੱਚ ਜੋੜੋ। ਫੇਰ, ਫ੍ਰੈਕਸ਼ਨ ਨੂੰ ਸਭ ਤੋਂ ਛੋਟੀਆਂ ਸੰਖਿਆਵਾਂ ਵਿੱਚ ਘਟਾ ਦਿਓ, ਜੇ ਸੰਭਵ ਹੋਵੇ।
\left(x-\frac{2}{3}\right)^{2}=\frac{8}{9}
ਫੈਕਟਰ x^{2}-\frac{4}{3}x+\frac{4}{9}। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x-\frac{2}{3}\right)^{2}}=\sqrt{\frac{8}{9}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x-\frac{2}{3}=\frac{2\sqrt{2}}{3} x-\frac{2}{3}=-\frac{2\sqrt{2}}{3}
ਸਪਸ਼ਟ ਕਰੋ।
x=\frac{2\sqrt{2}+2}{3} x=\frac{2-2\sqrt{2}}{3}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ \frac{2}{3} ਨੂੰ ਜੋੜੋ।