ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
n ਲਈ ਹਲ ਕਰੋ
Tick mark Image

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

9n^{2}-2n-6=0
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
n=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 9\left(-6\right)}}{2\times 9}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 9 ਨੂੰ a ਲਈ, -2 ਨੂੰ b ਲਈ, ਅਤੇ -6 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
n=\frac{-\left(-2\right)±\sqrt{4-4\times 9\left(-6\right)}}{2\times 9}
-2 ਦਾ ਵਰਗ ਕਰੋ।
n=\frac{-\left(-2\right)±\sqrt{4-36\left(-6\right)}}{2\times 9}
-4 ਨੂੰ 9 ਵਾਰ ਗੁਣਾ ਕਰੋ।
n=\frac{-\left(-2\right)±\sqrt{4+216}}{2\times 9}
-36 ਨੂੰ -6 ਵਾਰ ਗੁਣਾ ਕਰੋ।
n=\frac{-\left(-2\right)±\sqrt{220}}{2\times 9}
4 ਨੂੰ 216 ਵਿੱਚ ਜੋੜੋ।
n=\frac{-\left(-2\right)±2\sqrt{55}}{2\times 9}
220 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
n=\frac{2±2\sqrt{55}}{2\times 9}
-2 ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ 2 ਹੈ।
n=\frac{2±2\sqrt{55}}{18}
2 ਨੂੰ 9 ਵਾਰ ਗੁਣਾ ਕਰੋ।
n=\frac{2\sqrt{55}+2}{18}
ਹੁਣ, ਸਮੀਕਰਨ n=\frac{2±2\sqrt{55}}{18} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। 2 ਨੂੰ 2\sqrt{55} ਵਿੱਚ ਜੋੜੋ।
n=\frac{\sqrt{55}+1}{9}
2+2\sqrt{55} ਨੂੰ 18 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
n=\frac{2-2\sqrt{55}}{18}
ਹੁਣ, ਸਮੀਕਰਨ n=\frac{2±2\sqrt{55}}{18} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। 2 ਵਿੱਚੋਂ 2\sqrt{55} ਨੂੰ ਘਟਾਓ।
n=\frac{1-\sqrt{55}}{9}
2-2\sqrt{55} ਨੂੰ 18 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
n=\frac{\sqrt{55}+1}{9} n=\frac{1-\sqrt{55}}{9}
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
9n^{2}-2n-6=0
ਇਹੋ ਜਿਹੇ ਵਰਗਾਕਾਰ ਸਮੀਕਰਨਾਂ ਨੂੰ ਵਰਗ ਪੂਰਾ ਕਰਕੇ ਹਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਵਰਗ ਨੂੰ ਪੂਰਾ ਕਰਨ ਲਈ, ਸਮੀਕਰਨ ਦਾ ਪਹਿਲੇ x^{2}+bx=c ਦੇ ਫਾਰਮ ਵਿੱਚ ਹੋਣਾ ਲਾਜ਼ਮੀ ਹੈ।
9n^{2}-2n-6-\left(-6\right)=-\left(-6\right)
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 6 ਨੂੰ ਜੋੜੋ।
9n^{2}-2n=-\left(-6\right)
-6 ਨੂੰ ਆਪਣੇ-ਆਪ ਵਿੱਚੋਂ ਘਟਾ ਕੇ 0 ਬੱਚਦਾ ਹੈ।
9n^{2}-2n=6
0 ਵਿੱਚੋਂ -6 ਨੂੰ ਘਟਾਓ।
\frac{9n^{2}-2n}{9}=\frac{6}{9}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 9 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
n^{2}-\frac{2}{9}n=\frac{6}{9}
9 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ 9 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
n^{2}-\frac{2}{9}n=\frac{2}{3}
3 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{6}{9} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
n^{2}-\frac{2}{9}n+\left(-\frac{1}{9}\right)^{2}=\frac{2}{3}+\left(-\frac{1}{9}\right)^{2}
-\frac{2}{9}, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ -\frac{1}{9} ਨਿਕਲੇ। ਫੇਰ, -\frac{1}{9} ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
n^{2}-\frac{2}{9}n+\frac{1}{81}=\frac{2}{3}+\frac{1}{81}
ਫ੍ਰੈਕਸ਼ਨ ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਦਾ ਵਰਗ ਕੱਢ ਕੇ -\frac{1}{9} ਦਾ ਵਰਗ ਕੱਢੋ।
n^{2}-\frac{2}{9}n+\frac{1}{81}=\frac{55}{81}
ਸਾਂਝਾ ਡਿਨੋਮੀਨੇਟਰ(ਹੇਠਲੀ ਸੰਖਿਆ) ਲੱਭ ਕੇ ਅਤੇ ਨਿਉਮਰੇਟਰਾਂ(ਉੱਤਲੀ ਸੰਖਿਆ) ਨੂੰ ਜੋੜ ਕੇ \frac{2}{3} ਨੂੰ \frac{1}{81} ਵਿੱਚ ਜੋੜੋ। ਫੇਰ, ਫ੍ਰੈਕਸ਼ਨ ਨੂੰ ਸਭ ਤੋਂ ਛੋਟੀਆਂ ਸੰਖਿਆਵਾਂ ਵਿੱਚ ਘਟਾ ਦਿਓ, ਜੇ ਸੰਭਵ ਹੋਵੇ।
\left(n-\frac{1}{9}\right)^{2}=\frac{55}{81}
ਫੈਕਟਰ n^{2}-\frac{2}{9}n+\frac{1}{81}। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(n-\frac{1}{9}\right)^{2}}=\sqrt{\frac{55}{81}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
n-\frac{1}{9}=\frac{\sqrt{55}}{9} n-\frac{1}{9}=-\frac{\sqrt{55}}{9}
ਸਪਸ਼ਟ ਕਰੋ।
n=\frac{\sqrt{55}+1}{9} n=\frac{1-\sqrt{55}}{9}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ \frac{1}{9} ਨੂੰ ਜੋੜੋ।