ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
ਫੈਕਟਰ
Tick mark Image
ਮੁਲਾਂਕਣ ਕਰੋ
Tick mark Image

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

9\left(c^{2}+4c\right)
9 ਨੂੰ ਵੱਖਰਾ ਕਰ ਦਿਓ।
c\left(c+4\right)
c^{2}+4c 'ਤੇ ਵਿਚਾਰ ਕਰੋ। c ਨੂੰ ਵੱਖਰਾ ਕਰ ਦਿਓ।
9c\left(c+4\right)
ਪੂਰੀ ਕੀਤੀ ਫੈਕਟਰ ਵਾਲੀ ਅਭਿਵਿਅਕਤੀ ਨੂੰ ਦੁਬਾਰਾ ਲਿਖੋ।
9c^{2}+36c=0
ਦੋ-ਘਾਤੀ ਪੋਲੀਨੋਮੀਅਲ ਦੇ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ਟ੍ਰਾਂਸਫੋਰਮੇਸ਼ਨ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਫੈਕਟਰ ਬਣਾਏ ਜਾ ਸਕਦੇ ਹਨ, ਜਿੱਥੇ x_{1} ਅਤੇ x_{2} ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ ax^{2}+bx+c=0 ਦੇ ਹੱਲ ਹੁੰਦੇ ਹਨ।
c=\frac{-36±\sqrt{36^{2}}}{2\times 9}
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
c=\frac{-36±36}{2\times 9}
36^{2} ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
c=\frac{-36±36}{18}
2 ਨੂੰ 9 ਵਾਰ ਗੁਣਾ ਕਰੋ।
c=\frac{0}{18}
ਹੁਣ, ਸਮੀਕਰਨ c=\frac{-36±36}{18} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। -36 ਨੂੰ 36 ਵਿੱਚ ਜੋੜੋ।
c=0
0 ਨੂੰ 18 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
c=-\frac{72}{18}
ਹੁਣ, ਸਮੀਕਰਨ c=\frac{-36±36}{18} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। -36 ਵਿੱਚੋਂ 36 ਨੂੰ ਘਟਾਓ।
c=-4
-72 ਨੂੰ 18 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
9c^{2}+36c=9c\left(c-\left(-4\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਮੂਲ ਵਿਅੰਜਕ ਦੇ ਗੁਣਨ ਖੰਡ ਬਣਾਓ। x_{1} ਲਈ 0ਅਤੇ x_{2} ਲਈ -4 ਬਦਲ ਹੈ।
9c^{2}+36c=9c\left(c+4\right)
ਫਾਰਮ p-\left(-q\right) ਤੋਂ p+q ਤੱਕ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਹੱਲ ਕਰੋ।