x ਲਈ ਹਲ ਕਰੋ
x = \frac{\sqrt{393} + 19}{16} \approx 2.426514225
x=\frac{19-\sqrt{393}}{16}\approx -0.051514225
ਗ੍ਰਾਫ
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
9x\left(x-2\right)=x^{2}+x+1
ਵੇਰੀਏਬਲ x, 2 ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ x-2 ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
9x^{2}-18x=x^{2}+x+1
9x ਨੂੰ x-2 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
9x^{2}-18x-x^{2}=x+1
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ x^{2} ਨੂੰ ਘਟਾ ਦਿਓ।
8x^{2}-18x=x+1
8x^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 9x^{2} ਅਤੇ -x^{2} ਨੂੰ ਮਿਲਾਓ।
8x^{2}-18x-x=1
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ x ਨੂੰ ਘਟਾ ਦਿਓ।
8x^{2}-19x=1
-19x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -18x ਅਤੇ -x ਨੂੰ ਮਿਲਾਓ।
8x^{2}-19x-1=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 1 ਨੂੰ ਘਟਾ ਦਿਓ।
x=\frac{-\left(-19\right)±\sqrt{\left(-19\right)^{2}-4\times 8\left(-1\right)}}{2\times 8}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 8 ਨੂੰ a ਲਈ, -19 ਨੂੰ b ਲਈ, ਅਤੇ -1 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-\left(-19\right)±\sqrt{361-4\times 8\left(-1\right)}}{2\times 8}
-19 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-\left(-19\right)±\sqrt{361-32\left(-1\right)}}{2\times 8}
-4 ਨੂੰ 8 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-19\right)±\sqrt{361+32}}{2\times 8}
-32 ਨੂੰ -1 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-19\right)±\sqrt{393}}{2\times 8}
361 ਨੂੰ 32 ਵਿੱਚ ਜੋੜੋ।
x=\frac{19±\sqrt{393}}{2\times 8}
-19 ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ 19 ਹੈ।
x=\frac{19±\sqrt{393}}{16}
2 ਨੂੰ 8 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{\sqrt{393}+19}{16}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{19±\sqrt{393}}{16} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। 19 ਨੂੰ \sqrt{393} ਵਿੱਚ ਜੋੜੋ।
x=\frac{19-\sqrt{393}}{16}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{19±\sqrt{393}}{16} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। 19 ਵਿੱਚੋਂ \sqrt{393} ਨੂੰ ਘਟਾਓ।
x=\frac{\sqrt{393}+19}{16} x=\frac{19-\sqrt{393}}{16}
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
9x\left(x-2\right)=x^{2}+x+1
ਵੇਰੀਏਬਲ x, 2 ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ x-2 ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
9x^{2}-18x=x^{2}+x+1
9x ਨੂੰ x-2 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
9x^{2}-18x-x^{2}=x+1
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ x^{2} ਨੂੰ ਘਟਾ ਦਿਓ।
8x^{2}-18x=x+1
8x^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 9x^{2} ਅਤੇ -x^{2} ਨੂੰ ਮਿਲਾਓ।
8x^{2}-18x-x=1
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ x ਨੂੰ ਘਟਾ ਦਿਓ।
8x^{2}-19x=1
-19x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -18x ਅਤੇ -x ਨੂੰ ਮਿਲਾਓ।
\frac{8x^{2}-19x}{8}=\frac{1}{8}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 8 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x^{2}-\frac{19}{8}x=\frac{1}{8}
8 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ 8 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x^{2}-\frac{19}{8}x+\left(-\frac{19}{16}\right)^{2}=\frac{1}{8}+\left(-\frac{19}{16}\right)^{2}
-\frac{19}{8}, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ -\frac{19}{16} ਨਿਕਲੇ। ਫੇਰ, -\frac{19}{16} ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}-\frac{19}{8}x+\frac{361}{256}=\frac{1}{8}+\frac{361}{256}
ਫ੍ਰੈਕਸ਼ਨ ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਦਾ ਵਰਗ ਕੱਢ ਕੇ -\frac{19}{16} ਦਾ ਵਰਗ ਕੱਢੋ।
x^{2}-\frac{19}{8}x+\frac{361}{256}=\frac{393}{256}
ਸਾਂਝਾ ਡਿਨੋਮੀਨੇਟਰ(ਹੇਠਲੀ ਸੰਖਿਆ) ਲੱਭ ਕੇ ਅਤੇ ਨਿਉਮਰੇਟਰਾਂ(ਉੱਤਲੀ ਸੰਖਿਆ) ਨੂੰ ਜੋੜ ਕੇ \frac{1}{8} ਨੂੰ \frac{361}{256} ਵਿੱਚ ਜੋੜੋ। ਫੇਰ, ਫ੍ਰੈਕਸ਼ਨ ਨੂੰ ਸਭ ਤੋਂ ਛੋਟੀਆਂ ਸੰਖਿਆਵਾਂ ਵਿੱਚ ਘਟਾ ਦਿਓ, ਜੇ ਸੰਭਵ ਹੋਵੇ।
\left(x-\frac{19}{16}\right)^{2}=\frac{393}{256}
ਫੈਕਟਰ x^{2}-\frac{19}{8}x+\frac{361}{256}। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x-\frac{19}{16}\right)^{2}}=\sqrt{\frac{393}{256}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x-\frac{19}{16}=\frac{\sqrt{393}}{16} x-\frac{19}{16}=-\frac{\sqrt{393}}{16}
ਸਪਸ਼ਟ ਕਰੋ।
x=\frac{\sqrt{393}+19}{16} x=\frac{19-\sqrt{393}}{16}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ \frac{19}{16} ਨੂੰ ਜੋੜੋ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}