ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
ਫੈਕਟਰ
Tick mark Image
ਮੁਲਾਂਕਣ ਕਰੋ
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

a+b=10 ab=9\times 1=9
ਅਭਿਵਿਅਕਤੀ ਦਾ ਫੈਕਟਰ ਸਮੂਹ ਬਣਾ ਕੇ ਕੱਢੋ। ਪਹਿਲੇ, ਅਭਿਵਿਅਕਤੀ ਨੂੰ 9x^{2}+ax+bx+1 ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖਣ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ। a ਅਤੇ b ਨੂੰ ਕੱਢਣ ਲਈ, ਹੱਲ ਕੀਤੇ ਜਾਣ ਵਾਲੇ ਸਿਸਟਮ ਨੂੰ ਸੈਟਅੱਪ ਕਰੋ।
1,9 3,3
ਕਿਉਂਕਿ ab ਪਾਜ਼ੇਟਿਵ ਹੈ, a ਅਤੇ b ਦਾ ਸਮਾਨ ਚਿੰਨ੍ਹ ਹੁੰਦਾ ਹੈ। ਕਿਉਂਕਿ a+b ਪਾਜ਼ੇਟਿਵ ਹੈ, a ਅਤੇ b ਦੋਵੇਂ ਪਾਜ਼ੇਟਿਵ ਹੁੰਦੇ ਹਨ। ਅਜਿਹੇ ਸਾਰੇ ਪੂਰਣ ਅੰਕ ਜੋੜਿਆਂ ਦੀ ਸੂਚੀ ਬਣਾਓ ਜੋ 9 ਪ੍ਰੌਡਕਟ ਦਿੰਦੇ ਹਨ।
1+9=10 3+3=6
ਹਰ ਜੋੜੇ ਲਈ ਕੁੱਲ ਜੋੜ ਦਾ ਹਿਸਾਬ ਲਗਾਓ।
a=1 b=9
ਹੱਲ ਅਜਿਹਾ ਜੋੜਾ ਹੁੰਦਾ ਹੈ, ਜੋ 10 ਦਾ ਜੋੜ ਦਿੰਦਾ ਹੈ।
\left(9x^{2}+x\right)+\left(9x+1\right)
9x^{2}+10x+1 ਨੂੰ \left(9x^{2}+x\right)+\left(9x+1\right) ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖੋ।
x\left(9x+1\right)+9x+1
9x^{2}+x ਵਿੱਚੋਂ x ਫੈਕਟਰ ਕੱਢੋ।
\left(9x+1\right)\left(x+1\right)
ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੌਪਰਟੀ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਕੋਮਨ ਟਰਮ 9x+1 ਦਾ ਫੈਕਟਰ ਕੱਢੋ।
9x^{2}+10x+1=0
ਦੋ-ਘਾਤੀ ਪੋਲੀਨੋਮੀਅਲ ਦੇ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ਟ੍ਰਾਂਸਫੋਰਮੇਸ਼ਨ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਫੈਕਟਰ ਬਣਾਏ ਜਾ ਸਕਦੇ ਹਨ, ਜਿੱਥੇ x_{1} ਅਤੇ x_{2} ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ ax^{2}+bx+c=0 ਦੇ ਹੱਲ ਹੁੰਦੇ ਹਨ।
x=\frac{-10±\sqrt{10^{2}-4\times 9}}{2\times 9}
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
x=\frac{-10±\sqrt{100-4\times 9}}{2\times 9}
10 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-10±\sqrt{100-36}}{2\times 9}
-4 ਨੂੰ 9 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-10±\sqrt{64}}{2\times 9}
100 ਨੂੰ -36 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-10±8}{2\times 9}
64 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{-10±8}{18}
2 ਨੂੰ 9 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=-\frac{2}{18}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-10±8}{18} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। -10 ਨੂੰ 8 ਵਿੱਚ ਜੋੜੋ।
x=-\frac{1}{9}
2 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{-2}{18} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
x=-\frac{18}{18}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-10±8}{18} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। -10 ਵਿੱਚੋਂ 8 ਨੂੰ ਘਟਾਓ।
x=-1
-18 ਨੂੰ 18 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
9x^{2}+10x+1=9\left(x-\left(-\frac{1}{9}\right)\right)\left(x-\left(-1\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਮੂਲ ਵਿਅੰਜਕ ਦੇ ਗੁਣਨ ਖੰਡ ਬਣਾਓ। x_{1} ਲਈ -\frac{1}{9}ਅਤੇ x_{2} ਲਈ -1 ਬਦਲ ਹੈ।
9x^{2}+10x+1=9\left(x+\frac{1}{9}\right)\left(x+1\right)
ਫਾਰਮ p-\left(-q\right) ਤੋਂ p+q ਤੱਕ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਹੱਲ ਕਰੋ।
9x^{2}+10x+1=9\times \frac{9x+1}{9}\left(x+1\right)
ਸਾਂਝਾ ਡਿਨੋਮੀਨੇਟਰ(ਹੇਠਲੀ ਸੰਖਿਆ) ਲੱਭ ਕੇ ਅਤੇ ਨਿਉਮਰੇਟਰਾਂ(ਉੱਤਲੀ ਸੰਖਿਆ) ਨੂੰ ਜੋੜ ਕੇ \frac{1}{9} ਨੂੰ x ਵਿੱਚ ਜੋੜੋ। ਫੇਰ, ਫ੍ਰੈਕਸ਼ਨ ਨੂੰ ਸਭ ਤੋਂ ਛੋਟੀਆਂ ਸੰਖਿਆਵਾਂ ਵਿੱਚ ਘਟਾ ਦਿਓ, ਜੇ ਸੰਭਵ ਹੋਵੇ।
9x^{2}+10x+1=\left(9x+1\right)\left(x+1\right)
9 ਅਤੇ 9 ਵਿੱਚ ਸਭ ਤੋਂ ਵੱਧ ਕੋਮਨ ਫੈਕਟਰ 9 ਨੂੰ ਰੱਦ ਕਰੋ।