ਮੁਲਾਂਕਣ ਕਰੋ
\frac{756}{5}=151.2
ਫੈਕਟਰ
\frac{2 ^ {2} \cdot 3 ^ {3} \cdot 7}{5} = 151\frac{1}{5} = 151.2
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
9\times \frac{1}{\frac{7}{168}+\frac{3}{168}}
24 ਅਤੇ 56 ਦਾ ਸਭ ਤੋਂ ਛੋਟਾ ਆਮ ਗੁਣਕ 168 ਹੈ। \frac{1}{24} ਅਤੇ \frac{1}{56} ਨੂੰ 168 ਡਿਨੋਮਿਨੇਟਰ ਵਾਲੇ ਅੰਸ਼ ਵਿੱਚ ਬਦਲੋ।
9\times \frac{1}{\frac{7+3}{168}}
ਕਿਉਂਕਿ \frac{7}{168} ਅਤੇ \frac{3}{168} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਜੋੜ ਕੇ ਇਹਨਾਂ ਨੂੰ ਜੋੜੋ।
9\times \frac{1}{\frac{10}{168}}
10 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 7 ਅਤੇ 3 ਨੂੰ ਜੋੜੋ।
9\times \frac{1}{\frac{5}{84}}
2 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{10}{168} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
9\times 1\times \frac{84}{5}
1 ਨੂੰ \frac{5}{84} ਦੇ ਰੈਸੀਪ੍ਰੋਕਲ ਨਾਲ ਗੁਣਾ ਕਰਕੇ 1ਨੂੰ \frac{5}{84} ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
9\times \frac{84}{5}
\frac{84}{5} ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 1 ਅਤੇ \frac{84}{5} ਨੂੰ ਗੁਣਾ ਕਰੋ।
\frac{9\times 84}{5}
9\times \frac{84}{5} ਨੂੰ ਇੱਕੋ ਫ੍ਰੈਕਸ਼ਨ ਵਜੋਂ ਜਾਹਰ ਕਰੋ।
\frac{756}{5}
756 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 9 ਅਤੇ 84 ਨੂੰ ਗੁਣਾ ਕਰੋ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}