y ਲਈ ਹਲ ਕਰੋ
y=\frac{1}{3^{x}}
x ਲਈ ਹਲ ਕਰੋ (ਜਟਿਲ ਹੱਲ)
x=-\log_{3}\left(y\right)+\frac{2\pi n_{1}i}{\ln(3)}
n_{1}\in \mathrm{Z}
y\neq 0
x ਲਈ ਹਲ ਕਰੋ
x=-\log_{3}\left(y\right)
y>0
ਗ੍ਰਾਫ
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
9=y\times 3^{x+2}
ਵੇਰੀਏਬਲ y, 0 ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ y ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
y\times 3^{x+2}=9
ਪਾਸਿਆਂ ਨੂੰ ਸਵੈਪ ਕਰੋ ਤਾਂ ਜੋ ਸਾਰੇ ਵੇਰੀਏਬਲ ਟਰਮ ਖੱਬੇ ਪਾਸੇ ਉੱਤੇ ਹੋਣ।
3^{x+2}y=9
ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ।
\frac{3^{x+2}y}{3^{x+2}}=\frac{9}{3^{x+2}}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 3^{x+2} ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
y=\frac{9}{3^{x+2}}
3^{x+2} ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ 3^{x+2} ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
y=\frac{1}{3^{x}}
9 ਨੂੰ 3^{x+2} ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
y=\frac{1}{3^{x}}\text{, }y\neq 0
ਵੇਰੀਏਬਲ y, 0 ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}