ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
ਫੈਕਟਰ
Tick mark Image
ਮੁਲਾਂਕਣ ਕਰੋ
Tick mark Image

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

4v^{2}+12v+9
ਪੋਲੀਨੋਮਿਅਲ ਨੂੰ ਸਟੈਂਡਰਡ ਫਾਰਮ ਵਿੱਚ ਰੱਖਣ ਲਈ ਇਸ ਨੂੰ ਦੁਬਾਰਾ-ਵਿਵਸਥਿਤ ਕਰੋ। ਸੰਖਿਆਵਾਂ ਨੂੰ ਸਭ ਤੋਂ ਵੱਡੀ ਤੋਂ ਸਭ ਤੋਂ ਛੋਟੀ ਪਾਵਰ ਦੀ ਤਰਤੀਬ ਵਿੱਚ ਲਗਾਓ।
a+b=12 ab=4\times 9=36
ਅਭਿਵਿਅਕਤੀ ਦਾ ਫੈਕਟਰ ਸਮੂਹ ਬਣਾ ਕੇ ਕੱਢੋ। ਪਹਿਲੇ, ਅਭਿਵਿਅਕਤੀ ਨੂੰ 4v^{2}+av+bv+9 ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖਣ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ। a ਅਤੇ b ਨੂੰ ਕੱਢਣ ਲਈ, ਹੱਲ ਕੀਤੇ ਜਾਣ ਵਾਲੇ ਸਿਸਟਮ ਨੂੰ ਸੈਟਅੱਪ ਕਰੋ।
1,36 2,18 3,12 4,9 6,6
ਕਿਉਂਕਿ ab ਪਾਜ਼ੇਟਿਵ ਹੈ, a ਅਤੇ b ਦਾ ਸਮਾਨ ਚਿੰਨ੍ਹ ਹੁੰਦਾ ਹੈ। ਕਿਉਂਕਿ a+b ਪਾਜ਼ੇਟਿਵ ਹੈ, a ਅਤੇ b ਦੋਵੇਂ ਪਾਜ਼ੇਟਿਵ ਹੁੰਦੇ ਹਨ। ਅਜਿਹੇ ਸਾਰੇ ਪੂਰਣ ਅੰਕ ਜੋੜਿਆਂ ਦੀ ਸੂਚੀ ਬਣਾਓ ਜੋ 36 ਪ੍ਰੌਡਕਟ ਦਿੰਦੇ ਹਨ।
1+36=37 2+18=20 3+12=15 4+9=13 6+6=12
ਹਰ ਜੋੜੇ ਲਈ ਕੁੱਲ ਜੋੜ ਦਾ ਹਿਸਾਬ ਲਗਾਓ।
a=6 b=6
ਹੱਲ ਅਜਿਹਾ ਜੋੜਾ ਹੁੰਦਾ ਹੈ, ਜੋ 12 ਦਾ ਜੋੜ ਦਿੰਦਾ ਹੈ।
\left(4v^{2}+6v\right)+\left(6v+9\right)
4v^{2}+12v+9 ਨੂੰ \left(4v^{2}+6v\right)+\left(6v+9\right) ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖੋ।
2v\left(2v+3\right)+3\left(2v+3\right)
ਪਹਿਲੇ ਸਮੂਹ ਵਿੱਚ 2v ਦਾ ਅਤੇ ਦੂਜੇ ਵਿੱਚ 3 ਦਾ ਫੈਕਟਰ ਬਣਾਓ।
\left(2v+3\right)\left(2v+3\right)
ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੌਪਰਟੀ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਕੋਮਨ ਟਰਮ 2v+3 ਦਾ ਫੈਕਟਰ ਕੱਢੋ।
\left(2v+3\right)^{2}
ਬਾਈਨੋਮਿਅਲ (ਦੋ-ਪਦੀ) ਵਰਗ ਦੇ ਤੌਰ ਤੇ ਦੁਬਾਰਾ-ਲਿਖੋ।
factor(4v^{2}+12v+9)
ਇਸ ਟ੍ਰਾਈਨੋਮਿਅਲ ਕੋਲ, ਸ਼ਾਇਦ ਕੋਮਨ ਫੈਕਟਰ ਦੁਆਰਾ ਗੁਣਾ ਕੀਤਾ ਗਿਆ, ਟ੍ਰਾਈਨੋਮਿਅਲ ਵਰਗ ਦਾ ਰੂਪ ਹੁੰਦਾ ਹੈ। ਲੀਡਿੰਗ ਅਤੇ ਟ੍ਰੇਲਿੰਗ ਸੰਖਿਆਵਾਂ ਦੇ ਵਰਗ ਮੂਲ ਨੂੰ ਕੱਢ ਕੇ ਟ੍ਰਾਈਨੋਮਿਅਲ ਵਰਗ ਦਾ ਫੈਕਟਰ ਕੱਢਿਆ ਜਾ ਸਕਦਾ ਹੈ।
gcf(4,12,9)=1
ਕੌਫੀਸ਼ਿਏਂਟਾਂ ਦਾ ਸਭ ਤੋਂ ਕੋਮਨ ਫੈਕਟਰ ਕੱਢੋ।
\sqrt{4v^{2}}=2v
ਲੀਡਿੰਗ ਟਰਮ 4v^{2} ਦਾ ਵਰਗ ਮੂਲ ਕੱਢੋ।
\sqrt{9}=3
ਟ੍ਰੇਲਿੰਗ ਟਰਮ 9 ਦਾ ਵਰਗ ਮੂਲ ਕੱਢੋ।
\left(2v+3\right)^{2}
ਟ੍ਰਾਈਨੋਮਿਅਲ ਵਰਗ ਬਾਈਨੋਮਿਅਲ ਦਾ ਵਰਗ ਹੁੰਦਾ ਹੈ ਜੋ ਲੀਡਿਗ ਅਤੇ ਟ੍ਰੇਲਿੰਗ ਸੰਖਿਆਵਾਂ ਦੇ ਵਰਗ ਮੂਲਾਂ ਦਾ ਜੋੜ ਜਾਂ ਅੰਤਰ ਹੁੰਦਾ ਹੈ, ਜਿਸ ਦਾ ਚਿੰਨ੍ਹ ਟ੍ਰਾਈਨੋਮਿਅਲ ਵਰਗ ਦੀ ਵਿੱਚਕਾਰਲੀ ਸੰਖਿਆ ਦੇ ਚਿੰਨ੍ਹ ਦੁਆਰਾ ਨਿਰਧਾਰਤ ਹੁੰਦਾ ਹੈ।
4v^{2}+12v+9=0
ਦੋ-ਘਾਤੀ ਪੋਲੀਨੋਮੀਅਲ ਦੇ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ਟ੍ਰਾਂਸਫੋਰਮੇਸ਼ਨ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਫੈਕਟਰ ਬਣਾਏ ਜਾ ਸਕਦੇ ਹਨ, ਜਿੱਥੇ x_{1} ਅਤੇ x_{2} ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ ax^{2}+bx+c=0 ਦੇ ਹੱਲ ਹੁੰਦੇ ਹਨ।
v=\frac{-12±\sqrt{12^{2}-4\times 4\times 9}}{2\times 4}
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
v=\frac{-12±\sqrt{144-4\times 4\times 9}}{2\times 4}
12 ਦਾ ਵਰਗ ਕਰੋ।
v=\frac{-12±\sqrt{144-16\times 9}}{2\times 4}
-4 ਨੂੰ 4 ਵਾਰ ਗੁਣਾ ਕਰੋ।
v=\frac{-12±\sqrt{144-144}}{2\times 4}
-16 ਨੂੰ 9 ਵਾਰ ਗੁਣਾ ਕਰੋ।
v=\frac{-12±\sqrt{0}}{2\times 4}
144 ਨੂੰ -144 ਵਿੱਚ ਜੋੜੋ।
v=\frac{-12±0}{2\times 4}
0 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
v=\frac{-12±0}{8}
2 ਨੂੰ 4 ਵਾਰ ਗੁਣਾ ਕਰੋ।
4v^{2}+12v+9=4\left(v-\left(-\frac{3}{2}\right)\right)\left(v-\left(-\frac{3}{2}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਮੂਲ ਵਿਅੰਜਕ ਦੇ ਗੁਣਨ ਖੰਡ ਬਣਾਓ। x_{1} ਲਈ -\frac{3}{2}ਅਤੇ x_{2} ਲਈ -\frac{3}{2} ਬਦਲ ਹੈ।
4v^{2}+12v+9=4\left(v+\frac{3}{2}\right)\left(v+\frac{3}{2}\right)
ਫਾਰਮ p-\left(-q\right) ਤੋਂ p+q ਤੱਕ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਹੱਲ ਕਰੋ।
4v^{2}+12v+9=4\times \frac{2v+3}{2}\left(v+\frac{3}{2}\right)
ਸਾਂਝਾ ਡਿਨੋਮੀਨੇਟਰ(ਹੇਠਲੀ ਸੰਖਿਆ) ਲੱਭ ਕੇ ਅਤੇ ਨਿਉਮਰੇਟਰਾਂ(ਉੱਤਲੀ ਸੰਖਿਆ) ਨੂੰ ਜੋੜ ਕੇ \frac{3}{2} ਨੂੰ v ਵਿੱਚ ਜੋੜੋ। ਫੇਰ, ਫ੍ਰੈਕਸ਼ਨ ਨੂੰ ਸਭ ਤੋਂ ਛੋਟੀਆਂ ਸੰਖਿਆਵਾਂ ਵਿੱਚ ਘਟਾ ਦਿਓ, ਜੇ ਸੰਭਵ ਹੋਵੇ।
4v^{2}+12v+9=4\times \frac{2v+3}{2}\times \frac{2v+3}{2}
ਸਾਂਝਾ ਡਿਨੋਮੀਨੇਟਰ(ਹੇਠਲੀ ਸੰਖਿਆ) ਲੱਭ ਕੇ ਅਤੇ ਨਿਉਮਰੇਟਰਾਂ(ਉੱਤਲੀ ਸੰਖਿਆ) ਨੂੰ ਜੋੜ ਕੇ \frac{3}{2} ਨੂੰ v ਵਿੱਚ ਜੋੜੋ। ਫੇਰ, ਫ੍ਰੈਕਸ਼ਨ ਨੂੰ ਸਭ ਤੋਂ ਛੋਟੀਆਂ ਸੰਖਿਆਵਾਂ ਵਿੱਚ ਘਟਾ ਦਿਓ, ਜੇ ਸੰਭਵ ਹੋਵੇ।
4v^{2}+12v+9=4\times \frac{\left(2v+3\right)\left(2v+3\right)}{2\times 2}
ਨਿਉਮਰੇਟਰ ਟਾਇਮਸ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡਿਨੋਮੀਨੇਟਰ ਟਾਈਮਸ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ ਗੁਣਾ ਕਰਕੇ \frac{2v+3}{2} ਟਾਈਮਸ \frac{2v+3}{2} ਨੂੰ ਗੁਣਾ ਕਰੋ। ਫੇਰ, ਫ੍ਰੈਕਸ਼ਨ ਨੂੰ ਸਭ ਤੋਂ ਛੋਟੀਆਂ ਸੰਖਿਆਵਾਂ ਵਿੱਚ ਘਟਾ ਦਿਓ, ਜੇ ਸੰਭਵ ਹੋਵੇ।
4v^{2}+12v+9=4\times \frac{\left(2v+3\right)\left(2v+3\right)}{4}
2 ਨੂੰ 2 ਵਾਰ ਗੁਣਾ ਕਰੋ।
4v^{2}+12v+9=\left(2v+3\right)\left(2v+3\right)
4 ਅਤੇ 4 ਵਿੱਚ ਸਭ ਤੋਂ ਵੱਧ ਕੋਮਨ ਫੈਕਟਰ 4 ਨੂੰ ਰੱਦ ਕਰੋ।