ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
x ਲਈ ਹਲ ਕਰੋ (ਜਟਿਲ ਹੱਲ)
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

89x^{2}-6x+40=0
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 89\times 40}}{2\times 89}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 89 ਨੂੰ a ਲਈ, -6 ਨੂੰ b ਲਈ, ਅਤੇ 40 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-\left(-6\right)±\sqrt{36-4\times 89\times 40}}{2\times 89}
-6 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-\left(-6\right)±\sqrt{36-356\times 40}}{2\times 89}
-4 ਨੂੰ 89 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-6\right)±\sqrt{36-14240}}{2\times 89}
-356 ਨੂੰ 40 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-6\right)±\sqrt{-14204}}{2\times 89}
36 ਨੂੰ -14240 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-\left(-6\right)±2\sqrt{3551}i}{2\times 89}
-14204 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{6±2\sqrt{3551}i}{2\times 89}
-6 ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ 6 ਹੈ।
x=\frac{6±2\sqrt{3551}i}{178}
2 ਨੂੰ 89 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{6+2\sqrt{3551}i}{178}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{6±2\sqrt{3551}i}{178} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। 6 ਨੂੰ 2i\sqrt{3551} ਵਿੱਚ ਜੋੜੋ।
x=\frac{3+\sqrt{3551}i}{89}
6+2i\sqrt{3551} ਨੂੰ 178 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{-2\sqrt{3551}i+6}{178}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{6±2\sqrt{3551}i}{178} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। 6 ਵਿੱਚੋਂ 2i\sqrt{3551} ਨੂੰ ਘਟਾਓ।
x=\frac{-\sqrt{3551}i+3}{89}
6-2i\sqrt{3551} ਨੂੰ 178 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{3+\sqrt{3551}i}{89} x=\frac{-\sqrt{3551}i+3}{89}
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
89x^{2}-6x+40=0
ਇਹੋ ਜਿਹੇ ਵਰਗਾਕਾਰ ਸਮੀਕਰਨਾਂ ਨੂੰ ਵਰਗ ਪੂਰਾ ਕਰਕੇ ਹਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਵਰਗ ਨੂੰ ਪੂਰਾ ਕਰਨ ਲਈ, ਸਮੀਕਰਨ ਦਾ ਪਹਿਲੇ x^{2}+bx=c ਦੇ ਫਾਰਮ ਵਿੱਚ ਹੋਣਾ ਲਾਜ਼ਮੀ ਹੈ।
89x^{2}-6x+40-40=-40
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 40 ਨੂੰ ਘਟਾਓ।
89x^{2}-6x=-40
40 ਨੂੰ ਆਪਣੇ-ਆਪ ਵਿੱਚੋਂ ਘਟਾ ਕੇ 0 ਬੱਚਦਾ ਹੈ।
\frac{89x^{2}-6x}{89}=-\frac{40}{89}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 89 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x^{2}-\frac{6}{89}x=-\frac{40}{89}
89 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ 89 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x^{2}-\frac{6}{89}x+\left(-\frac{3}{89}\right)^{2}=-\frac{40}{89}+\left(-\frac{3}{89}\right)^{2}
-\frac{6}{89}, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ -\frac{3}{89} ਨਿਕਲੇ। ਫੇਰ, -\frac{3}{89} ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}-\frac{6}{89}x+\frac{9}{7921}=-\frac{40}{89}+\frac{9}{7921}
ਫ੍ਰੈਕਸ਼ਨ ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਦਾ ਵਰਗ ਕੱਢ ਕੇ -\frac{3}{89} ਦਾ ਵਰਗ ਕੱਢੋ।
x^{2}-\frac{6}{89}x+\frac{9}{7921}=-\frac{3551}{7921}
ਸਾਂਝਾ ਡਿਨੋਮੀਨੇਟਰ(ਹੇਠਲੀ ਸੰਖਿਆ) ਲੱਭ ਕੇ ਅਤੇ ਨਿਉਮਰੇਟਰਾਂ(ਉੱਤਲੀ ਸੰਖਿਆ) ਨੂੰ ਜੋੜ ਕੇ -\frac{40}{89} ਨੂੰ \frac{9}{7921} ਵਿੱਚ ਜੋੜੋ। ਫੇਰ, ਫ੍ਰੈਕਸ਼ਨ ਨੂੰ ਸਭ ਤੋਂ ਛੋਟੀਆਂ ਸੰਖਿਆਵਾਂ ਵਿੱਚ ਘਟਾ ਦਿਓ, ਜੇ ਸੰਭਵ ਹੋਵੇ।
\left(x-\frac{3}{89}\right)^{2}=-\frac{3551}{7921}
ਫੈਕਟਰ x^{2}-\frac{6}{89}x+\frac{9}{7921}। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x-\frac{3}{89}\right)^{2}}=\sqrt{-\frac{3551}{7921}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x-\frac{3}{89}=\frac{\sqrt{3551}i}{89} x-\frac{3}{89}=-\frac{\sqrt{3551}i}{89}
ਸਪਸ਼ਟ ਕਰੋ।
x=\frac{3+\sqrt{3551}i}{89} x=\frac{-\sqrt{3551}i+3}{89}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ \frac{3}{89} ਨੂੰ ਜੋੜੋ।