ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
x ਲਈ ਹਲ ਕਰੋ (ਜਟਿਲ ਹੱਲ)
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

88x^{2}-16x=-36
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
88x^{2}-16x-\left(-36\right)=-36-\left(-36\right)
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 36 ਨੂੰ ਜੋੜੋ।
88x^{2}-16x-\left(-36\right)=0
-36 ਨੂੰ ਆਪਣੇ-ਆਪ ਵਿੱਚੋਂ ਘਟਾ ਕੇ 0 ਬੱਚਦਾ ਹੈ।
88x^{2}-16x+36=0
0 ਵਿੱਚੋਂ -36 ਨੂੰ ਘਟਾਓ।
x=\frac{-\left(-16\right)±\sqrt{\left(-16\right)^{2}-4\times 88\times 36}}{2\times 88}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 88 ਨੂੰ a ਲਈ, -16 ਨੂੰ b ਲਈ, ਅਤੇ 36 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-\left(-16\right)±\sqrt{256-4\times 88\times 36}}{2\times 88}
-16 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-\left(-16\right)±\sqrt{256-352\times 36}}{2\times 88}
-4 ਨੂੰ 88 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-16\right)±\sqrt{256-12672}}{2\times 88}
-352 ਨੂੰ 36 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-16\right)±\sqrt{-12416}}{2\times 88}
256 ਨੂੰ -12672 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-\left(-16\right)±8\sqrt{194}i}{2\times 88}
-12416 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{16±8\sqrt{194}i}{2\times 88}
-16 ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ 16 ਹੈ।
x=\frac{16±8\sqrt{194}i}{176}
2 ਨੂੰ 88 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{16+8\sqrt{194}i}{176}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{16±8\sqrt{194}i}{176} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। 16 ਨੂੰ 8i\sqrt{194} ਵਿੱਚ ਜੋੜੋ।
x=\frac{\sqrt{194}i}{22}+\frac{1}{11}
16+8i\sqrt{194} ਨੂੰ 176 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{-8\sqrt{194}i+16}{176}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{16±8\sqrt{194}i}{176} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। 16 ਵਿੱਚੋਂ 8i\sqrt{194} ਨੂੰ ਘਟਾਓ।
x=-\frac{\sqrt{194}i}{22}+\frac{1}{11}
16-8i\sqrt{194} ਨੂੰ 176 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{\sqrt{194}i}{22}+\frac{1}{11} x=-\frac{\sqrt{194}i}{22}+\frac{1}{11}
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
88x^{2}-16x=-36
ਇਹੋ ਜਿਹੇ ਵਰਗਾਕਾਰ ਸਮੀਕਰਨਾਂ ਨੂੰ ਵਰਗ ਪੂਰਾ ਕਰਕੇ ਹਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਵਰਗ ਨੂੰ ਪੂਰਾ ਕਰਨ ਲਈ, ਸਮੀਕਰਨ ਦਾ ਪਹਿਲੇ x^{2}+bx=c ਦੇ ਫਾਰਮ ਵਿੱਚ ਹੋਣਾ ਲਾਜ਼ਮੀ ਹੈ।
\frac{88x^{2}-16x}{88}=-\frac{36}{88}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 88 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x^{2}+\left(-\frac{16}{88}\right)x=-\frac{36}{88}
88 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ 88 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x^{2}-\frac{2}{11}x=-\frac{36}{88}
8 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{-16}{88} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
x^{2}-\frac{2}{11}x=-\frac{9}{22}
4 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{-36}{88} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
x^{2}-\frac{2}{11}x+\left(-\frac{1}{11}\right)^{2}=-\frac{9}{22}+\left(-\frac{1}{11}\right)^{2}
-\frac{2}{11}, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ -\frac{1}{11} ਨਿਕਲੇ। ਫੇਰ, -\frac{1}{11} ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}-\frac{2}{11}x+\frac{1}{121}=-\frac{9}{22}+\frac{1}{121}
ਫ੍ਰੈਕਸ਼ਨ ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਦਾ ਵਰਗ ਕੱਢ ਕੇ -\frac{1}{11} ਦਾ ਵਰਗ ਕੱਢੋ।
x^{2}-\frac{2}{11}x+\frac{1}{121}=-\frac{97}{242}
ਸਾਂਝਾ ਡਿਨੋਮੀਨੇਟਰ(ਹੇਠਲੀ ਸੰਖਿਆ) ਲੱਭ ਕੇ ਅਤੇ ਨਿਉਮਰੇਟਰਾਂ(ਉੱਤਲੀ ਸੰਖਿਆ) ਨੂੰ ਜੋੜ ਕੇ -\frac{9}{22} ਨੂੰ \frac{1}{121} ਵਿੱਚ ਜੋੜੋ। ਫੇਰ, ਫ੍ਰੈਕਸ਼ਨ ਨੂੰ ਸਭ ਤੋਂ ਛੋਟੀਆਂ ਸੰਖਿਆਵਾਂ ਵਿੱਚ ਘਟਾ ਦਿਓ, ਜੇ ਸੰਭਵ ਹੋਵੇ।
\left(x-\frac{1}{11}\right)^{2}=-\frac{97}{242}
ਫੈਕਟਰ x^{2}-\frac{2}{11}x+\frac{1}{121}। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x-\frac{1}{11}\right)^{2}}=\sqrt{-\frac{97}{242}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x-\frac{1}{11}=\frac{\sqrt{194}i}{22} x-\frac{1}{11}=-\frac{\sqrt{194}i}{22}
ਸਪਸ਼ਟ ਕਰੋ।
x=\frac{\sqrt{194}i}{22}+\frac{1}{11} x=-\frac{\sqrt{194}i}{22}+\frac{1}{11}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ \frac{1}{11} ਨੂੰ ਜੋੜੋ।