x ਲਈ ਹਲ ਕਰੋ (ਜਟਿਲ ਹੱਲ)
x=2+i
x=2-i
ਗ੍ਰਾਫ
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
-16x^{2}+64x=80
ਪਾਸਿਆਂ ਨੂੰ ਸਵੈਪ ਕਰੋ ਤਾਂ ਜੋ ਸਾਰੇ ਵੇਰੀਏਬਲ ਟਰਮ ਖੱਬੇ ਪਾਸੇ ਉੱਤੇ ਹੋਣ।
-16x^{2}+64x-80=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 80 ਨੂੰ ਘਟਾ ਦਿਓ।
x=\frac{-64±\sqrt{64^{2}-4\left(-16\right)\left(-80\right)}}{2\left(-16\right)}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ -16 ਨੂੰ a ਲਈ, 64 ਨੂੰ b ਲਈ, ਅਤੇ -80 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-64±\sqrt{4096-4\left(-16\right)\left(-80\right)}}{2\left(-16\right)}
64 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-64±\sqrt{4096+64\left(-80\right)}}{2\left(-16\right)}
-4 ਨੂੰ -16 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-64±\sqrt{4096-5120}}{2\left(-16\right)}
64 ਨੂੰ -80 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-64±\sqrt{-1024}}{2\left(-16\right)}
4096 ਨੂੰ -5120 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-64±32i}{2\left(-16\right)}
-1024 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{-64±32i}{-32}
2 ਨੂੰ -16 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-64+32i}{-32}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-64±32i}{-32} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। -64 ਨੂੰ 32i ਵਿੱਚ ਜੋੜੋ।
x=2-i
-64+32i ਨੂੰ -32 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{-64-32i}{-32}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-64±32i}{-32} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। -64 ਵਿੱਚੋਂ 32i ਨੂੰ ਘਟਾਓ।
x=2+i
-64-32i ਨੂੰ -32 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=2-i x=2+i
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
-16x^{2}+64x=80
ਪਾਸਿਆਂ ਨੂੰ ਸਵੈਪ ਕਰੋ ਤਾਂ ਜੋ ਸਾਰੇ ਵੇਰੀਏਬਲ ਟਰਮ ਖੱਬੇ ਪਾਸੇ ਉੱਤੇ ਹੋਣ।
\frac{-16x^{2}+64x}{-16}=\frac{80}{-16}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ -16 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x^{2}+\frac{64}{-16}x=\frac{80}{-16}
-16 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ -16 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x^{2}-4x=\frac{80}{-16}
64 ਨੂੰ -16 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}-4x=-5
80 ਨੂੰ -16 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}-4x+\left(-2\right)^{2}=-5+\left(-2\right)^{2}
-4, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ -2 ਨਿਕਲੇ। ਫੇਰ, -2 ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}-4x+4=-5+4
-2 ਦਾ ਵਰਗ ਕਰੋ।
x^{2}-4x+4=-1
-5 ਨੂੰ 4 ਵਿੱਚ ਜੋੜੋ।
\left(x-2\right)^{2}=-1
ਫੈਕਟਰ x^{2}-4x+4। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x-2\right)^{2}}=\sqrt{-1}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x-2=i x-2=-i
ਸਪਸ਼ਟ ਕਰੋ।
x=2+i x=2-i
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 2 ਨੂੰ ਜੋੜੋ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}