ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
x ਲਈ ਹਲ ਕਰੋ
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

1600=\left(65+x\right)\left(25-x\right)
1600 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 80 ਅਤੇ 20 ਨੂੰ ਗੁਣਾ ਕਰੋ।
1600=1625-40x-x^{2}
65+x ਨੂੰ 25-x ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ ਕਰੋ ਅਤੇ ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
1625-40x-x^{2}=1600
ਪਾਸਿਆਂ ਨੂੰ ਸਵੈਪ ਕਰੋ ਤਾਂ ਜੋ ਸਾਰੇ ਵੇਰੀਏਬਲ ਟਰਮ ਖੱਬੇ ਪਾਸੇ ਉੱਤੇ ਹੋਣ।
1625-40x-x^{2}-1600=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 1600 ਨੂੰ ਘਟਾ ਦਿਓ।
25-40x-x^{2}=0
25 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 1625 ਵਿੱਚੋਂ 1600 ਨੂੰ ਘਟਾ ਦਿਓ।
-x^{2}-40x+25=0
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
x=\frac{-\left(-40\right)±\sqrt{\left(-40\right)^{2}-4\left(-1\right)\times 25}}{2\left(-1\right)}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ -1 ਨੂੰ a ਲਈ, -40 ਨੂੰ b ਲਈ, ਅਤੇ 25 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-\left(-40\right)±\sqrt{1600-4\left(-1\right)\times 25}}{2\left(-1\right)}
-40 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-\left(-40\right)±\sqrt{1600+4\times 25}}{2\left(-1\right)}
-4 ਨੂੰ -1 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-40\right)±\sqrt{1600+100}}{2\left(-1\right)}
4 ਨੂੰ 25 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-40\right)±\sqrt{1700}}{2\left(-1\right)}
1600 ਨੂੰ 100 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-\left(-40\right)±10\sqrt{17}}{2\left(-1\right)}
1700 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{40±10\sqrt{17}}{2\left(-1\right)}
-40 ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ 40 ਹੈ।
x=\frac{40±10\sqrt{17}}{-2}
2 ਨੂੰ -1 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{10\sqrt{17}+40}{-2}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{40±10\sqrt{17}}{-2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। 40 ਨੂੰ 10\sqrt{17} ਵਿੱਚ ਜੋੜੋ।
x=-5\sqrt{17}-20
40+10\sqrt{17} ਨੂੰ -2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{40-10\sqrt{17}}{-2}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{40±10\sqrt{17}}{-2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। 40 ਵਿੱਚੋਂ 10\sqrt{17} ਨੂੰ ਘਟਾਓ।
x=5\sqrt{17}-20
40-10\sqrt{17} ਨੂੰ -2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=-5\sqrt{17}-20 x=5\sqrt{17}-20
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
1600=\left(65+x\right)\left(25-x\right)
1600 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 80 ਅਤੇ 20 ਨੂੰ ਗੁਣਾ ਕਰੋ।
1600=1625-40x-x^{2}
65+x ਨੂੰ 25-x ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ ਕਰੋ ਅਤੇ ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
1625-40x-x^{2}=1600
ਪਾਸਿਆਂ ਨੂੰ ਸਵੈਪ ਕਰੋ ਤਾਂ ਜੋ ਸਾਰੇ ਵੇਰੀਏਬਲ ਟਰਮ ਖੱਬੇ ਪਾਸੇ ਉੱਤੇ ਹੋਣ।
-40x-x^{2}=1600-1625
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 1625 ਨੂੰ ਘਟਾ ਦਿਓ।
-40x-x^{2}=-25
-25 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 1600 ਵਿੱਚੋਂ 1625 ਨੂੰ ਘਟਾ ਦਿਓ।
-x^{2}-40x=-25
ਇਹੋ ਜਿਹੇ ਵਰਗਾਕਾਰ ਸਮੀਕਰਨਾਂ ਨੂੰ ਵਰਗ ਪੂਰਾ ਕਰਕੇ ਹਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਵਰਗ ਨੂੰ ਪੂਰਾ ਕਰਨ ਲਈ, ਸਮੀਕਰਨ ਦਾ ਪਹਿਲੇ x^{2}+bx=c ਦੇ ਫਾਰਮ ਵਿੱਚ ਹੋਣਾ ਲਾਜ਼ਮੀ ਹੈ।
\frac{-x^{2}-40x}{-1}=-\frac{25}{-1}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ -1 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x^{2}+\left(-\frac{40}{-1}\right)x=-\frac{25}{-1}
-1 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ -1 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x^{2}+40x=-\frac{25}{-1}
-40 ਨੂੰ -1 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}+40x=25
-25 ਨੂੰ -1 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}+40x+20^{2}=25+20^{2}
40, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ 20 ਨਿਕਲੇ। ਫੇਰ, 20 ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}+40x+400=25+400
20 ਦਾ ਵਰਗ ਕਰੋ।
x^{2}+40x+400=425
25 ਨੂੰ 400 ਵਿੱਚ ਜੋੜੋ।
\left(x+20\right)^{2}=425
ਫੈਕਟਰ x^{2}+40x+400। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x+20\right)^{2}}=\sqrt{425}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x+20=5\sqrt{17} x+20=-5\sqrt{17}
ਸਪਸ਼ਟ ਕਰੋ।
x=5\sqrt{17}-20 x=-5\sqrt{17}-20
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 20 ਨੂੰ ਘਟਾਓ।