ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
ਫੈਕਟਰ
Tick mark Image
ਮੁਲਾਂਕਣ ਕਰੋ
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

x\left(8x+25\right)
x ਨੂੰ ਵੱਖਰਾ ਕਰ ਦਿਓ।
8x^{2}+25x=0
ਦੋ-ਘਾਤੀ ਪੋਲੀਨੋਮੀਅਲ ਦੇ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ਟ੍ਰਾਂਸਫੋਰਮੇਸ਼ਨ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਫੈਕਟਰ ਬਣਾਏ ਜਾ ਸਕਦੇ ਹਨ, ਜਿੱਥੇ x_{1} ਅਤੇ x_{2} ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ ax^{2}+bx+c=0 ਦੇ ਹੱਲ ਹੁੰਦੇ ਹਨ।
x=\frac{-25±\sqrt{25^{2}}}{2\times 8}
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
x=\frac{-25±25}{2\times 8}
25^{2} ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{-25±25}{16}
2 ਨੂੰ 8 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{0}{16}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-25±25}{16} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। -25 ਨੂੰ 25 ਵਿੱਚ ਜੋੜੋ।
x=0
0 ਨੂੰ 16 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=-\frac{50}{16}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-25±25}{16} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। -25 ਵਿੱਚੋਂ 25 ਨੂੰ ਘਟਾਓ।
x=-\frac{25}{8}
2 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{-50}{16} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
8x^{2}+25x=8x\left(x-\left(-\frac{25}{8}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ਨੂੰ ਵਰਤ ਕੇ ਮੂਲ ਐਕਸਪ੍ਰੈਸ਼ਨ ਦਾ ਫੈਕਟਰ ਬਣਾਓ। x_{1} ਦੀ ਥਾਂ ਤੇ 0 ਅਤੇ x_{2} ਦੀ ਥਾਂ ਤੇ -\frac{25}{8} ਨੂੰ ਲਗਾਓ।
8x^{2}+25x=8x\left(x+\frac{25}{8}\right)
ਫਾਰਮ p-\left(-q\right) ਤੋਂ p+q ਤੱਕ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਹੱਲ ਕਰੋ।
8x^{2}+25x=8x\times \frac{8x+25}{8}
ਸਾਂਝਾ ਡਿਨੋਮੀਨੇਟਰ(ਹੇਠਲੀ ਸੰਖਿਆ) ਲੱਭ ਕੇ ਅਤੇ ਨਿਉਮਰੇਟਰਾਂ(ਉੱਤਲੀ ਸੰਖਿਆ) ਨੂੰ ਜੋੜ ਕੇ \frac{25}{8} ਨੂੰ x ਵਿੱਚ ਜੋੜੋ। ਫੇਰ, ਫ੍ਰੈਕਸ਼ਨ ਨੂੰ ਸਭ ਤੋਂ ਛੋਟੀਆਂ ਸੰਖਿਆਵਾਂ ਵਿੱਚ ਘਟਾ ਦਿਓ, ਜੇ ਸੰਭਵ ਹੋਵੇ।
8x^{2}+25x=x\left(8x+25\right)
8 ਅਤੇ 8 ਵਿੱਚ ਸਭ ਤੋਂ ਵੱਧ ਕੋਮਨ ਫੈਕਟਰ 8 ਨੂੰ ਰੱਦ ਕਰੋ।