ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
x ਲਈ ਹਲ ਕਰੋ
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

8x^{2}+22x-52=0
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
x=\frac{-22±\sqrt{22^{2}-4\times 8\left(-52\right)}}{2\times 8}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 8 ਨੂੰ a ਲਈ, 22 ਨੂੰ b ਲਈ, ਅਤੇ -52 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-22±\sqrt{484-4\times 8\left(-52\right)}}{2\times 8}
22 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-22±\sqrt{484-32\left(-52\right)}}{2\times 8}
-4 ਨੂੰ 8 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-22±\sqrt{484+1664}}{2\times 8}
-32 ਨੂੰ -52 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-22±\sqrt{2148}}{2\times 8}
484 ਨੂੰ 1664 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-22±2\sqrt{537}}{2\times 8}
2148 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{-22±2\sqrt{537}}{16}
2 ਨੂੰ 8 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{2\sqrt{537}-22}{16}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-22±2\sqrt{537}}{16} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। -22 ਨੂੰ 2\sqrt{537} ਵਿੱਚ ਜੋੜੋ।
x=\frac{\sqrt{537}-11}{8}
-22+2\sqrt{537} ਨੂੰ 16 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{-2\sqrt{537}-22}{16}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-22±2\sqrt{537}}{16} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। -22 ਵਿੱਚੋਂ 2\sqrt{537} ਨੂੰ ਘਟਾਓ।
x=\frac{-\sqrt{537}-11}{8}
-22-2\sqrt{537} ਨੂੰ 16 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{\sqrt{537}-11}{8} x=\frac{-\sqrt{537}-11}{8}
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
8x^{2}+22x-52=0
ਇਹੋ ਜਿਹੇ ਵਰਗਾਕਾਰ ਸਮੀਕਰਨਾਂ ਨੂੰ ਵਰਗ ਪੂਰਾ ਕਰਕੇ ਹਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਵਰਗ ਨੂੰ ਪੂਰਾ ਕਰਨ ਲਈ, ਸਮੀਕਰਨ ਦਾ ਪਹਿਲੇ x^{2}+bx=c ਦੇ ਫਾਰਮ ਵਿੱਚ ਹੋਣਾ ਲਾਜ਼ਮੀ ਹੈ।
8x^{2}+22x-52-\left(-52\right)=-\left(-52\right)
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 52 ਨੂੰ ਜੋੜੋ।
8x^{2}+22x=-\left(-52\right)
-52 ਨੂੰ ਆਪਣੇ-ਆਪ ਵਿੱਚੋਂ ਘਟਾ ਕੇ 0 ਬੱਚਦਾ ਹੈ।
8x^{2}+22x=52
0 ਵਿੱਚੋਂ -52 ਨੂੰ ਘਟਾਓ।
\frac{8x^{2}+22x}{8}=\frac{52}{8}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 8 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x^{2}+\frac{22}{8}x=\frac{52}{8}
8 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ 8 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x^{2}+\frac{11}{4}x=\frac{52}{8}
2 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{22}{8} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
x^{2}+\frac{11}{4}x=\frac{13}{2}
4 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{52}{8} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
x^{2}+\frac{11}{4}x+\left(\frac{11}{8}\right)^{2}=\frac{13}{2}+\left(\frac{11}{8}\right)^{2}
\frac{11}{4}, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ \frac{11}{8} ਨਿਕਲੇ। ਫੇਰ, \frac{11}{8} ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}+\frac{11}{4}x+\frac{121}{64}=\frac{13}{2}+\frac{121}{64}
ਫ੍ਰੈਕਸ਼ਨ ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਦਾ ਵਰਗ ਕੱਢ ਕੇ \frac{11}{8} ਦਾ ਵਰਗ ਕੱਢੋ।
x^{2}+\frac{11}{4}x+\frac{121}{64}=\frac{537}{64}
ਸਾਂਝਾ ਡਿਨੋਮੀਨੇਟਰ(ਹੇਠਲੀ ਸੰਖਿਆ) ਲੱਭ ਕੇ ਅਤੇ ਨਿਉਮਰੇਟਰਾਂ(ਉੱਤਲੀ ਸੰਖਿਆ) ਨੂੰ ਜੋੜ ਕੇ \frac{13}{2} ਨੂੰ \frac{121}{64} ਵਿੱਚ ਜੋੜੋ। ਫੇਰ, ਫ੍ਰੈਕਸ਼ਨ ਨੂੰ ਸਭ ਤੋਂ ਛੋਟੀਆਂ ਸੰਖਿਆਵਾਂ ਵਿੱਚ ਘਟਾ ਦਿਓ, ਜੇ ਸੰਭਵ ਹੋਵੇ।
\left(x+\frac{11}{8}\right)^{2}=\frac{537}{64}
ਫੈਕਟਰ x^{2}+\frac{11}{4}x+\frac{121}{64}। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x+\frac{11}{8}\right)^{2}}=\sqrt{\frac{537}{64}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x+\frac{11}{8}=\frac{\sqrt{537}}{8} x+\frac{11}{8}=-\frac{\sqrt{537}}{8}
ਸਪਸ਼ਟ ਕਰੋ।
x=\frac{\sqrt{537}-11}{8} x=\frac{-\sqrt{537}-11}{8}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ \frac{11}{8} ਨੂੰ ਘਟਾਓ।