ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
x ਲਈ ਹਲ ਕਰੋ
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

8x\left(x-2\right)\left(x+2\right)+\left(x-2\right)\left(x+2\right)\times 16+\left(x-2\right)\times 8\times \frac{1}{x-2}=\left(x+2\right)\left(8x^{2}-25\right)
ਵੇਰੀਏਬਲ x ਕਿਸੇ ਵੀ ਇੱਕ -2,2 ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ \left(x-2\right)\left(x+2\right), ਜੋ x+2,x-2 ਦਾ ਲੀਸਟ ਕੋਮਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
\left(8x^{2}-16x\right)\left(x+2\right)+\left(x-2\right)\left(x+2\right)\times 16+\left(x-2\right)\times 8\times \frac{1}{x-2}=\left(x+2\right)\left(8x^{2}-25\right)
8x ਨੂੰ x-2 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
8x^{3}-32x+\left(x-2\right)\left(x+2\right)\times 16+\left(x-2\right)\times 8\times \frac{1}{x-2}=\left(x+2\right)\left(8x^{2}-25\right)
8x^{2}-16x ਨੂੰ x+2 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ ਕਰੋ ਅਤੇ ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
8x^{3}-32x+\left(x^{2}-4\right)\times 16+\left(x-2\right)\times 8\times \frac{1}{x-2}=\left(x+2\right)\left(8x^{2}-25\right)
x-2 ਨੂੰ x+2 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ ਕਰੋ ਅਤੇ ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
8x^{3}-32x+16x^{2}-64+\left(x-2\right)\times 8\times \frac{1}{x-2}=\left(x+2\right)\left(8x^{2}-25\right)
x^{2}-4 ਨੂੰ 16 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
8x^{3}-32x+16x^{2}-64+\frac{x-2}{x-2}\times 8=\left(x+2\right)\left(8x^{2}-25\right)
\left(x-2\right)\times \frac{1}{x-2} ਨੂੰ ਇੱਕੋ ਫ੍ਰੈਕਸ਼ਨ ਵਜੋਂ ਜਾਹਰ ਕਰੋ।
8x^{3}-32x+16x^{2}-64+\frac{x-2}{x-2}\times 8=8x^{3}-25x+16x^{2}-50
x+2 ਨੂੰ 8x^{2}-25 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
8x^{3}-32x+16x^{2}-64+\frac{\left(x-2\right)\times 8}{x-2}=8x^{3}-25x+16x^{2}-50
\frac{x-2}{x-2}\times 8 ਨੂੰ ਇੱਕੋ ਫ੍ਰੈਕਸ਼ਨ ਵਜੋਂ ਜਾਹਰ ਕਰੋ।
\frac{\left(8x^{3}-32x+16x^{2}-64\right)\left(x-2\right)}{x-2}+\frac{\left(x-2\right)\times 8}{x-2}=8x^{3}-25x+16x^{2}-50
ਐਕਸਪ੍ਰੈਸ਼ਨ (ਚਿੰਨ੍ਹ-ਸੰਗ੍ਰਹਿ) ਨੂੰ ਜੋੜਣ ਜਾਂ ਘਟਾਉਣ ਲਈ, ਇਹਨਾਂ ਦੇ ਹਰਾਂ ਨੂੰ ਇੱਕ-ਸਮਾਨ ਕਰਨ ਲਈ ਇਹਨਾਂ ਨੂੰ ਫੈਲਾਓ। 8x^{3}-32x+16x^{2}-64 ਨੂੰ \frac{x-2}{x-2} ਵਾਰ ਗੁਣਾ ਕਰੋ।
\frac{\left(8x^{3}-32x+16x^{2}-64\right)\left(x-2\right)+\left(x-2\right)\times 8}{x-2}=8x^{3}-25x+16x^{2}-50
ਕਿਉਂਕਿ \frac{\left(8x^{3}-32x+16x^{2}-64\right)\left(x-2\right)}{x-2} ਅਤੇ \frac{\left(x-2\right)\times 8}{x-2} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਜੋੜ ਕੇ ਇਹਨਾਂ ਨੂੰ ਜੋੜੋ।
\frac{8x^{4}-16x^{3}-32x^{2}+64x+16x^{3}-32x^{2}-64x+128+8x-16}{x-2}=8x^{3}-25x+16x^{2}-50
\left(8x^{3}-32x+16x^{2}-64\right)\left(x-2\right)+\left(x-2\right)\times 8 ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
\frac{8x^{4}-64x^{2}+8x+112}{x-2}=8x^{3}-25x+16x^{2}-50
8x^{4}-16x^{3}-32x^{2}+64x+16x^{3}-32x^{2}-64x+128+8x-16 ਵਿੱਚ ਇੱਕ-ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
\frac{8x^{4}-64x^{2}+8x+112}{x-2}-8x^{3}=-25x+16x^{2}-50
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 8x^{3} ਨੂੰ ਘਟਾ ਦਿਓ।
\frac{8x^{4}-64x^{2}+8x+112}{x-2}+\frac{-8x^{3}\left(x-2\right)}{x-2}=-25x+16x^{2}-50
ਐਕਸਪ੍ਰੈਸ਼ਨ (ਚਿੰਨ੍ਹ-ਸੰਗ੍ਰਹਿ) ਨੂੰ ਜੋੜਣ ਜਾਂ ਘਟਾਉਣ ਲਈ, ਇਹਨਾਂ ਦੇ ਹਰਾਂ ਨੂੰ ਇੱਕ-ਸਮਾਨ ਕਰਨ ਲਈ ਇਹਨਾਂ ਨੂੰ ਫੈਲਾਓ। -8x^{3} ਨੂੰ \frac{x-2}{x-2} ਵਾਰ ਗੁਣਾ ਕਰੋ।
\frac{8x^{4}-64x^{2}+8x+112-8x^{3}\left(x-2\right)}{x-2}=-25x+16x^{2}-50
ਕਿਉਂਕਿ \frac{8x^{4}-64x^{2}+8x+112}{x-2} ਅਤੇ \frac{-8x^{3}\left(x-2\right)}{x-2} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਜੋੜ ਕੇ ਇਹਨਾਂ ਨੂੰ ਜੋੜੋ।
\frac{8x^{4}-64x^{2}+8x+112-8x^{4}+16x^{3}}{x-2}=-25x+16x^{2}-50
8x^{4}-64x^{2}+8x+112-8x^{3}\left(x-2\right) ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
\frac{-64x^{2}+8x+112+16x^{3}}{x-2}=-25x+16x^{2}-50
8x^{4}-64x^{2}+8x+112-8x^{4}+16x^{3} ਵਿੱਚ ਇੱਕ-ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
\frac{-64x^{2}+8x+112+16x^{3}}{x-2}+25x=16x^{2}-50
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 25x ਜੋੜੋ।
\frac{-64x^{2}+8x+112+16x^{3}}{x-2}+\frac{25x\left(x-2\right)}{x-2}=16x^{2}-50
ਐਕਸਪ੍ਰੈਸ਼ਨ (ਚਿੰਨ੍ਹ-ਸੰਗ੍ਰਹਿ) ਨੂੰ ਜੋੜਣ ਜਾਂ ਘਟਾਉਣ ਲਈ, ਇਹਨਾਂ ਦੇ ਹਰਾਂ ਨੂੰ ਇੱਕ-ਸਮਾਨ ਕਰਨ ਲਈ ਇਹਨਾਂ ਨੂੰ ਫੈਲਾਓ। 25x ਨੂੰ \frac{x-2}{x-2} ਵਾਰ ਗੁਣਾ ਕਰੋ।
\frac{-64x^{2}+8x+112+16x^{3}+25x\left(x-2\right)}{x-2}=16x^{2}-50
ਕਿਉਂਕਿ \frac{-64x^{2}+8x+112+16x^{3}}{x-2} ਅਤੇ \frac{25x\left(x-2\right)}{x-2} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਜੋੜ ਕੇ ਇਹਨਾਂ ਨੂੰ ਜੋੜੋ।
\frac{-64x^{2}+8x+112+16x^{3}+25x^{2}-50x}{x-2}=16x^{2}-50
-64x^{2}+8x+112+16x^{3}+25x\left(x-2\right) ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
\frac{-39x^{2}-42x+112+16x^{3}}{x-2}=16x^{2}-50
-64x^{2}+8x+112+16x^{3}+25x^{2}-50x ਵਿੱਚ ਇੱਕ-ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
\frac{-39x^{2}-42x+112+16x^{3}}{x-2}-16x^{2}=-50
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 16x^{2} ਨੂੰ ਘਟਾ ਦਿਓ।
\frac{-39x^{2}-42x+112+16x^{3}}{x-2}+\frac{-16x^{2}\left(x-2\right)}{x-2}=-50
ਐਕਸਪ੍ਰੈਸ਼ਨ (ਚਿੰਨ੍ਹ-ਸੰਗ੍ਰਹਿ) ਨੂੰ ਜੋੜਣ ਜਾਂ ਘਟਾਉਣ ਲਈ, ਇਹਨਾਂ ਦੇ ਹਰਾਂ ਨੂੰ ਇੱਕ-ਸਮਾਨ ਕਰਨ ਲਈ ਇਹਨਾਂ ਨੂੰ ਫੈਲਾਓ। -16x^{2} ਨੂੰ \frac{x-2}{x-2} ਵਾਰ ਗੁਣਾ ਕਰੋ।
\frac{-39x^{2}-42x+112+16x^{3}-16x^{2}\left(x-2\right)}{x-2}=-50
ਕਿਉਂਕਿ \frac{-39x^{2}-42x+112+16x^{3}}{x-2} ਅਤੇ \frac{-16x^{2}\left(x-2\right)}{x-2} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਜੋੜ ਕੇ ਇਹਨਾਂ ਨੂੰ ਜੋੜੋ।
\frac{-39x^{2}-42x+112+16x^{3}-16x^{3}+32x^{2}}{x-2}=-50
-39x^{2}-42x+112+16x^{3}-16x^{2}\left(x-2\right) ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
\frac{-7x^{2}-42x+112}{x-2}=-50
-39x^{2}-42x+112+16x^{3}-16x^{3}+32x^{2} ਵਿੱਚ ਇੱਕ-ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
\frac{-7x^{2}-42x+112}{x-2}+50=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 50 ਜੋੜੋ।
\frac{-7x^{2}-42x+112}{x-2}+\frac{50\left(x-2\right)}{x-2}=0
ਐਕਸਪ੍ਰੈਸ਼ਨ (ਚਿੰਨ੍ਹ-ਸੰਗ੍ਰਹਿ) ਨੂੰ ਜੋੜਣ ਜਾਂ ਘਟਾਉਣ ਲਈ, ਇਹਨਾਂ ਦੇ ਹਰਾਂ ਨੂੰ ਇੱਕ-ਸਮਾਨ ਕਰਨ ਲਈ ਇਹਨਾਂ ਨੂੰ ਫੈਲਾਓ। 50 ਨੂੰ \frac{x-2}{x-2} ਵਾਰ ਗੁਣਾ ਕਰੋ।
\frac{-7x^{2}-42x+112+50\left(x-2\right)}{x-2}=0
ਕਿਉਂਕਿ \frac{-7x^{2}-42x+112}{x-2} ਅਤੇ \frac{50\left(x-2\right)}{x-2} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਜੋੜ ਕੇ ਇਹਨਾਂ ਨੂੰ ਜੋੜੋ।
\frac{-7x^{2}-42x+112+50x-100}{x-2}=0
-7x^{2}-42x+112+50\left(x-2\right) ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
\frac{-7x^{2}+8x+12}{x-2}=0
-7x^{2}-42x+112+50x-100 ਵਿੱਚ ਇੱਕ-ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
-7x^{2}+8x+12=0
ਵੇਰੀਏਬਲ x, 2 ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ x-2 ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
a+b=8 ab=-7\times 12=-84
ਸਮੀਕਰਨ ਨੂੰ ਹੱਲ ਕਰਨ ਲਈ, ਸਮੂਹ ਬਣਾ ਕੇ ਖੱਬੇ ਪਾਸੇ ਦਾ ਫੈਕਟਰ ਕੱਢੋ। ਪਹਿਲਾਂ, ਖੱਬੇ ਪਾਸੇ ਵਾਲੇ ਨੂੰ -7x^{2}+ax+bx+12 ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖਣ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ। a ਅਤੇ b ਨੂੰ ਕੱਢਣ ਲਈ, ਹੱਲ ਕੀਤੇ ਜਾਣ ਵਾਲੇ ਸਿਸਟਮ ਨੂੰ ਸੈਟਅੱਪ ਕਰੋ।
-1,84 -2,42 -3,28 -4,21 -6,14 -7,12
ਕਿਉਂਕਿ ab ਨੈਗੇਟਿਵ ਹੈ, a ਅਤੇ b ਦੇ ਵਿਪਰੀਤ ਚਿੰਨ੍ਹ ਹੁੰਦੇ ਹਨ। ਕਿਉਂਕਿ a+b ਪਾਜ਼ੇਟਿਵ ਹੈ, ਪਾਜ਼ੇਟਿਵ ਨੰਬਰ ਦੀ ਨੈਗੇਟਿਵ ਨਾਲੋਂ ਵੱਡੀ ਐਬਸੋਲਿਉਟ ਵੈਲਯੂ ਹੁੰਦੀ ਹੈ। ਅਜਿਹੇ ਸਾਰੇ ਪੂਰਣ ਅੰਕ ਜੋੜਿਆਂ ਦੀ ਸੂਚੀ ਬਣਾਓ ਜੋ -84 ਪ੍ਰੌਡਕਟ ਦਿੰਦੇ ਹਨ।
-1+84=83 -2+42=40 -3+28=25 -4+21=17 -6+14=8 -7+12=5
ਹਰ ਜੋੜੇ ਲਈ ਕੁੱਲ ਜੋੜ ਦਾ ਹਿਸਾਬ ਲਗਾਓ।
a=14 b=-6
ਹੱਲ ਅਜਿਹਾ ਜੋੜਾ ਹੁੰਦਾ ਹੈ, ਜੋ 8 ਦਾ ਜੋੜ ਦਿੰਦਾ ਹੈ।
\left(-7x^{2}+14x\right)+\left(-6x+12\right)
-7x^{2}+8x+12 ਨੂੰ \left(-7x^{2}+14x\right)+\left(-6x+12\right) ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖੋ।
7x\left(-x+2\right)+6\left(-x+2\right)
ਪਹਿਲੇ ਸਮੂਹ ਵਿੱਚ 7x ਦਾ ਅਤੇ ਦੂਜੇ ਵਿੱਚ 6 ਦਾ ਫੈਕਟਰ ਬਣਾਓ।
\left(-x+2\right)\left(7x+6\right)
ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੌਪਰਟੀ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਕੋਮਨ ਟਰਮ -x+2 ਦਾ ਫੈਕਟਰ ਕੱਢੋ।
x=2 x=-\frac{6}{7}
ਸਮੀਕਰਨਾਂ ਦੇ ਹੱਲ ਕੱਢਣ ਲਈ, -x+2=0 ਅਤੇ 7x+6=0 ਨੂੰ ਹੱਲ ਕਰੋ।
x=-\frac{6}{7}
ਵੇਰੀਏਬਲ x, 2 ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ।
8x\left(x-2\right)\left(x+2\right)+\left(x-2\right)\left(x+2\right)\times 16+\left(x-2\right)\times 8\times \frac{1}{x-2}=\left(x+2\right)\left(8x^{2}-25\right)
ਵੇਰੀਏਬਲ x ਕਿਸੇ ਵੀ ਇੱਕ -2,2 ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ \left(x-2\right)\left(x+2\right), ਜੋ x+2,x-2 ਦਾ ਲੀਸਟ ਕੋਮਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
\left(8x^{2}-16x\right)\left(x+2\right)+\left(x-2\right)\left(x+2\right)\times 16+\left(x-2\right)\times 8\times \frac{1}{x-2}=\left(x+2\right)\left(8x^{2}-25\right)
8x ਨੂੰ x-2 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
8x^{3}-32x+\left(x-2\right)\left(x+2\right)\times 16+\left(x-2\right)\times 8\times \frac{1}{x-2}=\left(x+2\right)\left(8x^{2}-25\right)
8x^{2}-16x ਨੂੰ x+2 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ ਕਰੋ ਅਤੇ ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
8x^{3}-32x+\left(x^{2}-4\right)\times 16+\left(x-2\right)\times 8\times \frac{1}{x-2}=\left(x+2\right)\left(8x^{2}-25\right)
x-2 ਨੂੰ x+2 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ ਕਰੋ ਅਤੇ ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
8x^{3}-32x+16x^{2}-64+\left(x-2\right)\times 8\times \frac{1}{x-2}=\left(x+2\right)\left(8x^{2}-25\right)
x^{2}-4 ਨੂੰ 16 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
8x^{3}-32x+16x^{2}-64+\frac{x-2}{x-2}\times 8=\left(x+2\right)\left(8x^{2}-25\right)
\left(x-2\right)\times \frac{1}{x-2} ਨੂੰ ਇੱਕੋ ਫ੍ਰੈਕਸ਼ਨ ਵਜੋਂ ਜਾਹਰ ਕਰੋ।
8x^{3}-32x+16x^{2}-64+\frac{x-2}{x-2}\times 8=8x^{3}-25x+16x^{2}-50
x+2 ਨੂੰ 8x^{2}-25 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
8x^{3}-32x+16x^{2}-64+\frac{\left(x-2\right)\times 8}{x-2}=8x^{3}-25x+16x^{2}-50
\frac{x-2}{x-2}\times 8 ਨੂੰ ਇੱਕੋ ਫ੍ਰੈਕਸ਼ਨ ਵਜੋਂ ਜਾਹਰ ਕਰੋ।
\frac{\left(8x^{3}-32x+16x^{2}-64\right)\left(x-2\right)}{x-2}+\frac{\left(x-2\right)\times 8}{x-2}=8x^{3}-25x+16x^{2}-50
ਐਕਸਪ੍ਰੈਸ਼ਨ (ਚਿੰਨ੍ਹ-ਸੰਗ੍ਰਹਿ) ਨੂੰ ਜੋੜਣ ਜਾਂ ਘਟਾਉਣ ਲਈ, ਇਹਨਾਂ ਦੇ ਹਰਾਂ ਨੂੰ ਇੱਕ-ਸਮਾਨ ਕਰਨ ਲਈ ਇਹਨਾਂ ਨੂੰ ਫੈਲਾਓ। 8x^{3}-32x+16x^{2}-64 ਨੂੰ \frac{x-2}{x-2} ਵਾਰ ਗੁਣਾ ਕਰੋ।
\frac{\left(8x^{3}-32x+16x^{2}-64\right)\left(x-2\right)+\left(x-2\right)\times 8}{x-2}=8x^{3}-25x+16x^{2}-50
ਕਿਉਂਕਿ \frac{\left(8x^{3}-32x+16x^{2}-64\right)\left(x-2\right)}{x-2} ਅਤੇ \frac{\left(x-2\right)\times 8}{x-2} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਜੋੜ ਕੇ ਇਹਨਾਂ ਨੂੰ ਜੋੜੋ।
\frac{8x^{4}-16x^{3}-32x^{2}+64x+16x^{3}-32x^{2}-64x+128+8x-16}{x-2}=8x^{3}-25x+16x^{2}-50
\left(8x^{3}-32x+16x^{2}-64\right)\left(x-2\right)+\left(x-2\right)\times 8 ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
\frac{8x^{4}-64x^{2}+8x+112}{x-2}=8x^{3}-25x+16x^{2}-50
8x^{4}-16x^{3}-32x^{2}+64x+16x^{3}-32x^{2}-64x+128+8x-16 ਵਿੱਚ ਇੱਕ-ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
\frac{8x^{4}-64x^{2}+8x+112}{x-2}-8x^{3}=-25x+16x^{2}-50
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 8x^{3} ਨੂੰ ਘਟਾ ਦਿਓ।
\frac{8x^{4}-64x^{2}+8x+112}{x-2}+\frac{-8x^{3}\left(x-2\right)}{x-2}=-25x+16x^{2}-50
ਐਕਸਪ੍ਰੈਸ਼ਨ (ਚਿੰਨ੍ਹ-ਸੰਗ੍ਰਹਿ) ਨੂੰ ਜੋੜਣ ਜਾਂ ਘਟਾਉਣ ਲਈ, ਇਹਨਾਂ ਦੇ ਹਰਾਂ ਨੂੰ ਇੱਕ-ਸਮਾਨ ਕਰਨ ਲਈ ਇਹਨਾਂ ਨੂੰ ਫੈਲਾਓ। -8x^{3} ਨੂੰ \frac{x-2}{x-2} ਵਾਰ ਗੁਣਾ ਕਰੋ।
\frac{8x^{4}-64x^{2}+8x+112-8x^{3}\left(x-2\right)}{x-2}=-25x+16x^{2}-50
ਕਿਉਂਕਿ \frac{8x^{4}-64x^{2}+8x+112}{x-2} ਅਤੇ \frac{-8x^{3}\left(x-2\right)}{x-2} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਜੋੜ ਕੇ ਇਹਨਾਂ ਨੂੰ ਜੋੜੋ।
\frac{8x^{4}-64x^{2}+8x+112-8x^{4}+16x^{3}}{x-2}=-25x+16x^{2}-50
8x^{4}-64x^{2}+8x+112-8x^{3}\left(x-2\right) ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
\frac{-64x^{2}+8x+112+16x^{3}}{x-2}=-25x+16x^{2}-50
8x^{4}-64x^{2}+8x+112-8x^{4}+16x^{3} ਵਿੱਚ ਇੱਕ-ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
\frac{-64x^{2}+8x+112+16x^{3}}{x-2}+25x=16x^{2}-50
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 25x ਜੋੜੋ।
\frac{-64x^{2}+8x+112+16x^{3}}{x-2}+\frac{25x\left(x-2\right)}{x-2}=16x^{2}-50
ਐਕਸਪ੍ਰੈਸ਼ਨ (ਚਿੰਨ੍ਹ-ਸੰਗ੍ਰਹਿ) ਨੂੰ ਜੋੜਣ ਜਾਂ ਘਟਾਉਣ ਲਈ, ਇਹਨਾਂ ਦੇ ਹਰਾਂ ਨੂੰ ਇੱਕ-ਸਮਾਨ ਕਰਨ ਲਈ ਇਹਨਾਂ ਨੂੰ ਫੈਲਾਓ। 25x ਨੂੰ \frac{x-2}{x-2} ਵਾਰ ਗੁਣਾ ਕਰੋ।
\frac{-64x^{2}+8x+112+16x^{3}+25x\left(x-2\right)}{x-2}=16x^{2}-50
ਕਿਉਂਕਿ \frac{-64x^{2}+8x+112+16x^{3}}{x-2} ਅਤੇ \frac{25x\left(x-2\right)}{x-2} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਜੋੜ ਕੇ ਇਹਨਾਂ ਨੂੰ ਜੋੜੋ।
\frac{-64x^{2}+8x+112+16x^{3}+25x^{2}-50x}{x-2}=16x^{2}-50
-64x^{2}+8x+112+16x^{3}+25x\left(x-2\right) ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
\frac{-39x^{2}-42x+112+16x^{3}}{x-2}=16x^{2}-50
-64x^{2}+8x+112+16x^{3}+25x^{2}-50x ਵਿੱਚ ਇੱਕ-ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
\frac{-39x^{2}-42x+112+16x^{3}}{x-2}-16x^{2}=-50
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 16x^{2} ਨੂੰ ਘਟਾ ਦਿਓ।
\frac{-39x^{2}-42x+112+16x^{3}}{x-2}+\frac{-16x^{2}\left(x-2\right)}{x-2}=-50
ਐਕਸਪ੍ਰੈਸ਼ਨ (ਚਿੰਨ੍ਹ-ਸੰਗ੍ਰਹਿ) ਨੂੰ ਜੋੜਣ ਜਾਂ ਘਟਾਉਣ ਲਈ, ਇਹਨਾਂ ਦੇ ਹਰਾਂ ਨੂੰ ਇੱਕ-ਸਮਾਨ ਕਰਨ ਲਈ ਇਹਨਾਂ ਨੂੰ ਫੈਲਾਓ। -16x^{2} ਨੂੰ \frac{x-2}{x-2} ਵਾਰ ਗੁਣਾ ਕਰੋ।
\frac{-39x^{2}-42x+112+16x^{3}-16x^{2}\left(x-2\right)}{x-2}=-50
ਕਿਉਂਕਿ \frac{-39x^{2}-42x+112+16x^{3}}{x-2} ਅਤੇ \frac{-16x^{2}\left(x-2\right)}{x-2} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਜੋੜ ਕੇ ਇਹਨਾਂ ਨੂੰ ਜੋੜੋ।
\frac{-39x^{2}-42x+112+16x^{3}-16x^{3}+32x^{2}}{x-2}=-50
-39x^{2}-42x+112+16x^{3}-16x^{2}\left(x-2\right) ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
\frac{-7x^{2}-42x+112}{x-2}=-50
-39x^{2}-42x+112+16x^{3}-16x^{3}+32x^{2} ਵਿੱਚ ਇੱਕ-ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
\frac{-7x^{2}-42x+112}{x-2}+50=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 50 ਜੋੜੋ।
\frac{-7x^{2}-42x+112}{x-2}+\frac{50\left(x-2\right)}{x-2}=0
ਐਕਸਪ੍ਰੈਸ਼ਨ (ਚਿੰਨ੍ਹ-ਸੰਗ੍ਰਹਿ) ਨੂੰ ਜੋੜਣ ਜਾਂ ਘਟਾਉਣ ਲਈ, ਇਹਨਾਂ ਦੇ ਹਰਾਂ ਨੂੰ ਇੱਕ-ਸਮਾਨ ਕਰਨ ਲਈ ਇਹਨਾਂ ਨੂੰ ਫੈਲਾਓ। 50 ਨੂੰ \frac{x-2}{x-2} ਵਾਰ ਗੁਣਾ ਕਰੋ।
\frac{-7x^{2}-42x+112+50\left(x-2\right)}{x-2}=0
ਕਿਉਂਕਿ \frac{-7x^{2}-42x+112}{x-2} ਅਤੇ \frac{50\left(x-2\right)}{x-2} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਜੋੜ ਕੇ ਇਹਨਾਂ ਨੂੰ ਜੋੜੋ।
\frac{-7x^{2}-42x+112+50x-100}{x-2}=0
-7x^{2}-42x+112+50\left(x-2\right) ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
\frac{-7x^{2}+8x+12}{x-2}=0
-7x^{2}-42x+112+50x-100 ਵਿੱਚ ਇੱਕ-ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
-7x^{2}+8x+12=0
ਵੇਰੀਏਬਲ x, 2 ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ x-2 ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
x=\frac{-8±\sqrt{8^{2}-4\left(-7\right)\times 12}}{2\left(-7\right)}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ -7 ਨੂੰ a ਲਈ, 8 ਨੂੰ b ਲਈ, ਅਤੇ 12 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-8±\sqrt{64-4\left(-7\right)\times 12}}{2\left(-7\right)}
8 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-8±\sqrt{64+28\times 12}}{2\left(-7\right)}
-4 ਨੂੰ -7 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-8±\sqrt{64+336}}{2\left(-7\right)}
28 ਨੂੰ 12 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-8±\sqrt{400}}{2\left(-7\right)}
64 ਨੂੰ 336 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-8±20}{2\left(-7\right)}
400 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{-8±20}{-14}
2 ਨੂੰ -7 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{12}{-14}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-8±20}{-14} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। -8 ਨੂੰ 20 ਵਿੱਚ ਜੋੜੋ।
x=-\frac{6}{7}
2 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{12}{-14} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
x=-\frac{28}{-14}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-8±20}{-14} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। -8 ਵਿੱਚੋਂ 20 ਨੂੰ ਘਟਾਓ।
x=2
-28 ਨੂੰ -14 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=-\frac{6}{7} x=2
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
x=-\frac{6}{7}
ਵੇਰੀਏਬਲ x, 2 ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ।
8x\left(x-2\right)\left(x+2\right)+\left(x-2\right)\left(x+2\right)\times 16+\left(x-2\right)\times 8\times \frac{1}{x-2}=\left(x+2\right)\left(8x^{2}-25\right)
ਵੇਰੀਏਬਲ x ਕਿਸੇ ਵੀ ਇੱਕ -2,2 ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ \left(x-2\right)\left(x+2\right), ਜੋ x+2,x-2 ਦਾ ਲੀਸਟ ਕੋਮਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
\left(8x^{2}-16x\right)\left(x+2\right)+\left(x-2\right)\left(x+2\right)\times 16+\left(x-2\right)\times 8\times \frac{1}{x-2}=\left(x+2\right)\left(8x^{2}-25\right)
8x ਨੂੰ x-2 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
8x^{3}-32x+\left(x-2\right)\left(x+2\right)\times 16+\left(x-2\right)\times 8\times \frac{1}{x-2}=\left(x+2\right)\left(8x^{2}-25\right)
8x^{2}-16x ਨੂੰ x+2 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ ਕਰੋ ਅਤੇ ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
8x^{3}-32x+\left(x^{2}-4\right)\times 16+\left(x-2\right)\times 8\times \frac{1}{x-2}=\left(x+2\right)\left(8x^{2}-25\right)
x-2 ਨੂੰ x+2 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ ਕਰੋ ਅਤੇ ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
8x^{3}-32x+16x^{2}-64+\left(x-2\right)\times 8\times \frac{1}{x-2}=\left(x+2\right)\left(8x^{2}-25\right)
x^{2}-4 ਨੂੰ 16 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
8x^{3}-32x+16x^{2}-64+\frac{x-2}{x-2}\times 8=\left(x+2\right)\left(8x^{2}-25\right)
\left(x-2\right)\times \frac{1}{x-2} ਨੂੰ ਇੱਕੋ ਫ੍ਰੈਕਸ਼ਨ ਵਜੋਂ ਜਾਹਰ ਕਰੋ।
8x^{3}-32x+16x^{2}-64+\frac{x-2}{x-2}\times 8=8x^{3}-25x+16x^{2}-50
x+2 ਨੂੰ 8x^{2}-25 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
8x^{3}-32x+16x^{2}-64+\frac{\left(x-2\right)\times 8}{x-2}=8x^{3}-25x+16x^{2}-50
\frac{x-2}{x-2}\times 8 ਨੂੰ ਇੱਕੋ ਫ੍ਰੈਕਸ਼ਨ ਵਜੋਂ ਜਾਹਰ ਕਰੋ।
\frac{\left(8x^{3}-32x+16x^{2}-64\right)\left(x-2\right)}{x-2}+\frac{\left(x-2\right)\times 8}{x-2}=8x^{3}-25x+16x^{2}-50
ਐਕਸਪ੍ਰੈਸ਼ਨ (ਚਿੰਨ੍ਹ-ਸੰਗ੍ਰਹਿ) ਨੂੰ ਜੋੜਣ ਜਾਂ ਘਟਾਉਣ ਲਈ, ਇਹਨਾਂ ਦੇ ਹਰਾਂ ਨੂੰ ਇੱਕ-ਸਮਾਨ ਕਰਨ ਲਈ ਇਹਨਾਂ ਨੂੰ ਫੈਲਾਓ। 8x^{3}-32x+16x^{2}-64 ਨੂੰ \frac{x-2}{x-2} ਵਾਰ ਗੁਣਾ ਕਰੋ।
\frac{\left(8x^{3}-32x+16x^{2}-64\right)\left(x-2\right)+\left(x-2\right)\times 8}{x-2}=8x^{3}-25x+16x^{2}-50
ਕਿਉਂਕਿ \frac{\left(8x^{3}-32x+16x^{2}-64\right)\left(x-2\right)}{x-2} ਅਤੇ \frac{\left(x-2\right)\times 8}{x-2} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਜੋੜ ਕੇ ਇਹਨਾਂ ਨੂੰ ਜੋੜੋ।
\frac{8x^{4}-16x^{3}-32x^{2}+64x+16x^{3}-32x^{2}-64x+128+8x-16}{x-2}=8x^{3}-25x+16x^{2}-50
\left(8x^{3}-32x+16x^{2}-64\right)\left(x-2\right)+\left(x-2\right)\times 8 ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
\frac{8x^{4}-64x^{2}+8x+112}{x-2}=8x^{3}-25x+16x^{2}-50
8x^{4}-16x^{3}-32x^{2}+64x+16x^{3}-32x^{2}-64x+128+8x-16 ਵਿੱਚ ਇੱਕ-ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
\frac{8x^{4}-64x^{2}+8x+112}{x-2}-8x^{3}=-25x+16x^{2}-50
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 8x^{3} ਨੂੰ ਘਟਾ ਦਿਓ।
\frac{8x^{4}-64x^{2}+8x+112}{x-2}+\frac{-8x^{3}\left(x-2\right)}{x-2}=-25x+16x^{2}-50
ਐਕਸਪ੍ਰੈਸ਼ਨ (ਚਿੰਨ੍ਹ-ਸੰਗ੍ਰਹਿ) ਨੂੰ ਜੋੜਣ ਜਾਂ ਘਟਾਉਣ ਲਈ, ਇਹਨਾਂ ਦੇ ਹਰਾਂ ਨੂੰ ਇੱਕ-ਸਮਾਨ ਕਰਨ ਲਈ ਇਹਨਾਂ ਨੂੰ ਫੈਲਾਓ। -8x^{3} ਨੂੰ \frac{x-2}{x-2} ਵਾਰ ਗੁਣਾ ਕਰੋ।
\frac{8x^{4}-64x^{2}+8x+112-8x^{3}\left(x-2\right)}{x-2}=-25x+16x^{2}-50
ਕਿਉਂਕਿ \frac{8x^{4}-64x^{2}+8x+112}{x-2} ਅਤੇ \frac{-8x^{3}\left(x-2\right)}{x-2} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਜੋੜ ਕੇ ਇਹਨਾਂ ਨੂੰ ਜੋੜੋ।
\frac{8x^{4}-64x^{2}+8x+112-8x^{4}+16x^{3}}{x-2}=-25x+16x^{2}-50
8x^{4}-64x^{2}+8x+112-8x^{3}\left(x-2\right) ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
\frac{-64x^{2}+8x+112+16x^{3}}{x-2}=-25x+16x^{2}-50
8x^{4}-64x^{2}+8x+112-8x^{4}+16x^{3} ਵਿੱਚ ਇੱਕ-ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
\frac{-64x^{2}+8x+112+16x^{3}}{x-2}+25x=16x^{2}-50
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 25x ਜੋੜੋ।
\frac{-64x^{2}+8x+112+16x^{3}}{x-2}+\frac{25x\left(x-2\right)}{x-2}=16x^{2}-50
ਐਕਸਪ੍ਰੈਸ਼ਨ (ਚਿੰਨ੍ਹ-ਸੰਗ੍ਰਹਿ) ਨੂੰ ਜੋੜਣ ਜਾਂ ਘਟਾਉਣ ਲਈ, ਇਹਨਾਂ ਦੇ ਹਰਾਂ ਨੂੰ ਇੱਕ-ਸਮਾਨ ਕਰਨ ਲਈ ਇਹਨਾਂ ਨੂੰ ਫੈਲਾਓ। 25x ਨੂੰ \frac{x-2}{x-2} ਵਾਰ ਗੁਣਾ ਕਰੋ।
\frac{-64x^{2}+8x+112+16x^{3}+25x\left(x-2\right)}{x-2}=16x^{2}-50
ਕਿਉਂਕਿ \frac{-64x^{2}+8x+112+16x^{3}}{x-2} ਅਤੇ \frac{25x\left(x-2\right)}{x-2} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਜੋੜ ਕੇ ਇਹਨਾਂ ਨੂੰ ਜੋੜੋ।
\frac{-64x^{2}+8x+112+16x^{3}+25x^{2}-50x}{x-2}=16x^{2}-50
-64x^{2}+8x+112+16x^{3}+25x\left(x-2\right) ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
\frac{-39x^{2}-42x+112+16x^{3}}{x-2}=16x^{2}-50
-64x^{2}+8x+112+16x^{3}+25x^{2}-50x ਵਿੱਚ ਇੱਕ-ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
\frac{-39x^{2}-42x+112+16x^{3}}{x-2}-16x^{2}=-50
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 16x^{2} ਨੂੰ ਘਟਾ ਦਿਓ।
\frac{-39x^{2}-42x+112+16x^{3}}{x-2}+\frac{-16x^{2}\left(x-2\right)}{x-2}=-50
ਐਕਸਪ੍ਰੈਸ਼ਨ (ਚਿੰਨ੍ਹ-ਸੰਗ੍ਰਹਿ) ਨੂੰ ਜੋੜਣ ਜਾਂ ਘਟਾਉਣ ਲਈ, ਇਹਨਾਂ ਦੇ ਹਰਾਂ ਨੂੰ ਇੱਕ-ਸਮਾਨ ਕਰਨ ਲਈ ਇਹਨਾਂ ਨੂੰ ਫੈਲਾਓ। -16x^{2} ਨੂੰ \frac{x-2}{x-2} ਵਾਰ ਗੁਣਾ ਕਰੋ।
\frac{-39x^{2}-42x+112+16x^{3}-16x^{2}\left(x-2\right)}{x-2}=-50
ਕਿਉਂਕਿ \frac{-39x^{2}-42x+112+16x^{3}}{x-2} ਅਤੇ \frac{-16x^{2}\left(x-2\right)}{x-2} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਜੋੜ ਕੇ ਇਹਨਾਂ ਨੂੰ ਜੋੜੋ।
\frac{-39x^{2}-42x+112+16x^{3}-16x^{3}+32x^{2}}{x-2}=-50
-39x^{2}-42x+112+16x^{3}-16x^{2}\left(x-2\right) ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
\frac{-7x^{2}-42x+112}{x-2}=-50
-39x^{2}-42x+112+16x^{3}-16x^{3}+32x^{2} ਵਿੱਚ ਇੱਕ-ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
-7x^{2}-42x+112=-50\left(x-2\right)
ਵੇਰੀਏਬਲ x, 2 ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ x-2 ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
-7x^{2}-42x+112=-50x+100
-50 ਨੂੰ x-2 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
-7x^{2}-42x+112+50x=100
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 50x ਜੋੜੋ।
-7x^{2}+8x+112=100
8x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -42x ਅਤੇ 50x ਨੂੰ ਮਿਲਾਓ।
-7x^{2}+8x=100-112
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 112 ਨੂੰ ਘਟਾ ਦਿਓ।
-7x^{2}+8x=-12
-12 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 100 ਵਿੱਚੋਂ 112 ਨੂੰ ਘਟਾ ਦਿਓ।
\frac{-7x^{2}+8x}{-7}=-\frac{12}{-7}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ -7 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x^{2}+\frac{8}{-7}x=-\frac{12}{-7}
-7 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ -7 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x^{2}-\frac{8}{7}x=-\frac{12}{-7}
8 ਨੂੰ -7 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}-\frac{8}{7}x=\frac{12}{7}
-12 ਨੂੰ -7 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}-\frac{8}{7}x+\left(-\frac{4}{7}\right)^{2}=\frac{12}{7}+\left(-\frac{4}{7}\right)^{2}
-\frac{8}{7}, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ -\frac{4}{7} ਨਿਕਲੇ। ਫੇਰ, -\frac{4}{7} ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}-\frac{8}{7}x+\frac{16}{49}=\frac{12}{7}+\frac{16}{49}
ਫ੍ਰੈਕਸ਼ਨ ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਦਾ ਵਰਗ ਕੱਢ ਕੇ -\frac{4}{7} ਦਾ ਵਰਗ ਕੱਢੋ।
x^{2}-\frac{8}{7}x+\frac{16}{49}=\frac{100}{49}
ਸਾਂਝਾ ਡਿਨੋਮੀਨੇਟਰ(ਹੇਠਲੀ ਸੰਖਿਆ) ਲੱਭ ਕੇ ਅਤੇ ਨਿਉਮਰੇਟਰਾਂ(ਉੱਤਲੀ ਸੰਖਿਆ) ਨੂੰ ਜੋੜ ਕੇ \frac{12}{7} ਨੂੰ \frac{16}{49} ਵਿੱਚ ਜੋੜੋ। ਫੇਰ, ਫ੍ਰੈਕਸ਼ਨ ਨੂੰ ਸਭ ਤੋਂ ਛੋਟੀਆਂ ਸੰਖਿਆਵਾਂ ਵਿੱਚ ਘਟਾ ਦਿਓ, ਜੇ ਸੰਭਵ ਹੋਵੇ।
\left(x-\frac{4}{7}\right)^{2}=\frac{100}{49}
ਫੈਕਟਰ x^{2}-\frac{8}{7}x+\frac{16}{49}। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x-\frac{4}{7}\right)^{2}}=\sqrt{\frac{100}{49}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x-\frac{4}{7}=\frac{10}{7} x-\frac{4}{7}=-\frac{10}{7}
ਸਪਸ਼ਟ ਕਰੋ।
x=2 x=-\frac{6}{7}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ \frac{4}{7} ਨੂੰ ਜੋੜੋ।
x=-\frac{6}{7}
ਵੇਰੀਏਬਲ x, 2 ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ।