z ਲਈ ਹਲ ਕਰੋ
z = -\frac{3}{2} = -1\frac{1}{2} = -1.5
z=-\frac{1}{2}=-0.5
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
7z^{2}+8z+3-3z^{2}=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 3z^{2} ਨੂੰ ਘਟਾ ਦਿਓ।
4z^{2}+8z+3=0
4z^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 7z^{2} ਅਤੇ -3z^{2} ਨੂੰ ਮਿਲਾਓ।
a+b=8 ab=4\times 3=12
ਸਮੀਕਰਨ ਨੂੰ ਹੱਲ ਕਰਨ ਲਈ, ਸਮੂਹ ਬਣਾ ਕੇ ਖੱਬੇ ਪਾਸੇ ਦਾ ਫੈਕਟਰ ਕੱਢੋ। ਪਹਿਲਾਂ, ਖੱਬੇ ਪਾਸੇ ਵਾਲੇ ਨੂੰ 4z^{2}+az+bz+3 ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖਣ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ। a ਅਤੇ b ਨੂੰ ਕੱਢਣ ਲਈ, ਹੱਲ ਕੀਤੇ ਜਾਣ ਵਾਲੇ ਸਿਸਟਮ ਨੂੰ ਸੈਟਅੱਪ ਕਰੋ।
1,12 2,6 3,4
ਕਿਉਂਕਿ ab ਪਾਜ਼ੇਟਿਵ ਹੈ, a ਅਤੇ b ਦਾ ਸਮਾਨ ਚਿੰਨ੍ਹ ਹੁੰਦਾ ਹੈ। ਕਿਉਂਕਿ a+b ਪਾਜ਼ੇਟਿਵ ਹੈ, a ਅਤੇ b ਦੋਵੇਂ ਪਾਜ਼ੇਟਿਵ ਹੁੰਦੇ ਹਨ। ਅਜਿਹੇ ਸਾਰੇ ਪੂਰਣ ਅੰਕ ਜੋੜਿਆਂ ਦੀ ਸੂਚੀ ਬਣਾਓ ਜੋ 12 ਪ੍ਰੌਡਕਟ ਦਿੰਦੇ ਹਨ।
1+12=13 2+6=8 3+4=7
ਹਰ ਜੋੜੇ ਲਈ ਕੁੱਲ ਜੋੜ ਦਾ ਹਿਸਾਬ ਲਗਾਓ।
a=2 b=6
ਹੱਲ ਅਜਿਹਾ ਜੋੜਾ ਹੁੰਦਾ ਹੈ, ਜੋ 8 ਦਾ ਜੋੜ ਦਿੰਦਾ ਹੈ।
\left(4z^{2}+2z\right)+\left(6z+3\right)
4z^{2}+8z+3 ਨੂੰ \left(4z^{2}+2z\right)+\left(6z+3\right) ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖੋ।
2z\left(2z+1\right)+3\left(2z+1\right)
ਪਹਿਲੇ ਸਮੂਹ ਵਿੱਚ 2z ਦਾ ਅਤੇ ਦੂਜੇ ਵਿੱਚ 3 ਦਾ ਫੈਕਟਰ ਬਣਾਓ।
\left(2z+1\right)\left(2z+3\right)
ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੌਪਰਟੀ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਕੋਮਨ ਟਰਮ 2z+1 ਦਾ ਫੈਕਟਰ ਕੱਢੋ।
z=-\frac{1}{2} z=-\frac{3}{2}
ਸਮੀਕਰਨਾਂ ਦੇ ਹੱਲ ਕੱਢਣ ਲਈ, 2z+1=0 ਅਤੇ 2z+3=0 ਨੂੰ ਹੱਲ ਕਰੋ।
7z^{2}+8z+3-3z^{2}=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 3z^{2} ਨੂੰ ਘਟਾ ਦਿਓ।
4z^{2}+8z+3=0
4z^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 7z^{2} ਅਤੇ -3z^{2} ਨੂੰ ਮਿਲਾਓ।
z=\frac{-8±\sqrt{8^{2}-4\times 4\times 3}}{2\times 4}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 4 ਨੂੰ a ਲਈ, 8 ਨੂੰ b ਲਈ, ਅਤੇ 3 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
z=\frac{-8±\sqrt{64-4\times 4\times 3}}{2\times 4}
8 ਦਾ ਵਰਗ ਕਰੋ।
z=\frac{-8±\sqrt{64-16\times 3}}{2\times 4}
-4 ਨੂੰ 4 ਵਾਰ ਗੁਣਾ ਕਰੋ।
z=\frac{-8±\sqrt{64-48}}{2\times 4}
-16 ਨੂੰ 3 ਵਾਰ ਗੁਣਾ ਕਰੋ।
z=\frac{-8±\sqrt{16}}{2\times 4}
64 ਨੂੰ -48 ਵਿੱਚ ਜੋੜੋ।
z=\frac{-8±4}{2\times 4}
16 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
z=\frac{-8±4}{8}
2 ਨੂੰ 4 ਵਾਰ ਗੁਣਾ ਕਰੋ।
z=-\frac{4}{8}
ਹੁਣ, ਸਮੀਕਰਨ z=\frac{-8±4}{8} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। -8 ਨੂੰ 4 ਵਿੱਚ ਜੋੜੋ।
z=-\frac{1}{2}
4 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{-4}{8} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
z=-\frac{12}{8}
ਹੁਣ, ਸਮੀਕਰਨ z=\frac{-8±4}{8} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। -8 ਵਿੱਚੋਂ 4 ਨੂੰ ਘਟਾਓ।
z=-\frac{3}{2}
4 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{-12}{8} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
z=-\frac{1}{2} z=-\frac{3}{2}
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
7z^{2}+8z+3-3z^{2}=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 3z^{2} ਨੂੰ ਘਟਾ ਦਿਓ।
4z^{2}+8z+3=0
4z^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 7z^{2} ਅਤੇ -3z^{2} ਨੂੰ ਮਿਲਾਓ।
4z^{2}+8z=-3
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 3 ਨੂੰ ਘਟਾ ਦਿਓ। ਸਿਫਰ ਵਿੱਚੋ ਘਟਾਈ ਗਈ ਰਕਮ ਦਾ ਜਵਾਬ ਉਹੀ ਰਕਮ ਹੁੰਦੀ ਹੈ।
\frac{4z^{2}+8z}{4}=-\frac{3}{4}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 4 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
z^{2}+\frac{8}{4}z=-\frac{3}{4}
4 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ 4 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
z^{2}+2z=-\frac{3}{4}
8 ਨੂੰ 4 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
z^{2}+2z+1^{2}=-\frac{3}{4}+1^{2}
2, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ 1 ਨਿਕਲੇ। ਫੇਰ, 1 ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
z^{2}+2z+1=-\frac{3}{4}+1
1 ਦਾ ਵਰਗ ਕਰੋ।
z^{2}+2z+1=\frac{1}{4}
-\frac{3}{4} ਨੂੰ 1 ਵਿੱਚ ਜੋੜੋ।
\left(z+1\right)^{2}=\frac{1}{4}
ਫੈਕਟਰ z^{2}+2z+1। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(z+1\right)^{2}}=\sqrt{\frac{1}{4}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
z+1=\frac{1}{2} z+1=-\frac{1}{2}
ਸਪਸ਼ਟ ਕਰੋ।
z=-\frac{1}{2} z=-\frac{3}{2}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 1 ਨੂੰ ਘਟਾਓ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}