ਫੈਕਟਰ
\left(x-1\right)\left(7x-2\right)
ਮੁਲਾਂਕਣ ਕਰੋ
\left(x-1\right)\left(7x-2\right)
ਗ੍ਰਾਫ
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
a+b=-9 ab=7\times 2=14
ਅਭਿਵਿਅਕਤੀ ਦਾ ਫੈਕਟਰ ਸਮੂਹ ਬਣਾ ਕੇ ਕੱਢੋ। ਪਹਿਲੇ, ਅਭਿਵਿਅਕਤੀ ਨੂੰ 7x^{2}+ax+bx+2 ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖਣ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ। a ਅਤੇ b ਨੂੰ ਕੱਢਣ ਲਈ, ਹੱਲ ਕੀਤੇ ਜਾਣ ਵਾਲੇ ਸਿਸਟਮ ਨੂੰ ਸੈਟਅੱਪ ਕਰੋ।
-1,-14 -2,-7
ਕਿਉਂਕਿ ab ਪਾਜ਼ੇਟਿਵ ਹੈ, a ਅਤੇ b ਦਾ ਸਮਾਨ ਚਿੰਨ੍ਹ ਹੁੰਦਾ ਹੈ। ਕਿਉਂਕਿ a+b ਨੈਗੇਟਿਵ ਹੈ, a ਅਤੇ b ਦੋਵੇਂ ਪਾਜ਼ੇਟਿਵ ਹੁੰਦੇ ਹਨ। ਅਜਿਹੇ ਸਾਰੇ ਪੂਰਣ ਅੰਕ ਜੋੜਿਆਂ ਦੀ ਸੂਚੀ ਬਣਾਓ ਜੋ 14 ਪ੍ਰੌਡਕਟ ਦਿੰਦੇ ਹਨ।
-1-14=-15 -2-7=-9
ਹਰ ਜੋੜੇ ਲਈ ਕੁੱਲ ਜੋੜ ਦਾ ਹਿਸਾਬ ਲਗਾਓ।
a=-7 b=-2
ਹੱਲ ਅਜਿਹਾ ਜੋੜਾ ਹੁੰਦਾ ਹੈ, ਜੋ -9 ਦਾ ਜੋੜ ਦਿੰਦਾ ਹੈ।
\left(7x^{2}-7x\right)+\left(-2x+2\right)
7x^{2}-9x+2 ਨੂੰ \left(7x^{2}-7x\right)+\left(-2x+2\right) ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖੋ।
7x\left(x-1\right)-2\left(x-1\right)
ਪਹਿਲੇ ਸਮੂਹ ਵਿੱਚ 7x ਦਾ ਅਤੇ ਦੂਜੇ ਵਿੱਚ -2 ਦਾ ਫੈਕਟਰ ਬਣਾਓ।
\left(x-1\right)\left(7x-2\right)
ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੌਪਰਟੀ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਕੋਮਨ ਟਰਮ x-1 ਦਾ ਫੈਕਟਰ ਕੱਢੋ।
7x^{2}-9x+2=0
ਦੋ-ਘਾਤੀ ਪੋਲੀਨੋਮੀਅਲ ਦੇ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ਟ੍ਰਾਂਸਫੋਰਮੇਸ਼ਨ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਫੈਕਟਰ ਬਣਾਏ ਜਾ ਸਕਦੇ ਹਨ, ਜਿੱਥੇ x_{1} ਅਤੇ x_{2} ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ ax^{2}+bx+c=0 ਦੇ ਹੱਲ ਹੁੰਦੇ ਹਨ।
x=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\times 7\times 2}}{2\times 7}
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
x=\frac{-\left(-9\right)±\sqrt{81-4\times 7\times 2}}{2\times 7}
-9 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-\left(-9\right)±\sqrt{81-28\times 2}}{2\times 7}
-4 ਨੂੰ 7 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-9\right)±\sqrt{81-56}}{2\times 7}
-28 ਨੂੰ 2 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-9\right)±\sqrt{25}}{2\times 7}
81 ਨੂੰ -56 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-\left(-9\right)±5}{2\times 7}
25 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{9±5}{2\times 7}
-9 ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ 9 ਹੈ।
x=\frac{9±5}{14}
2 ਨੂੰ 7 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{14}{14}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{9±5}{14} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। 9 ਨੂੰ 5 ਵਿੱਚ ਜੋੜੋ।
x=1
14 ਨੂੰ 14 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{4}{14}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{9±5}{14} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। 9 ਵਿੱਚੋਂ 5 ਨੂੰ ਘਟਾਓ।
x=\frac{2}{7}
2 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{4}{14} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
7x^{2}-9x+2=7\left(x-1\right)\left(x-\frac{2}{7}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਮੂਲ ਵਿਅੰਜਕ ਦੇ ਗੁਣਨ ਖੰਡ ਬਣਾਓ। x_{1} ਲਈ 1ਅਤੇ x_{2} ਲਈ \frac{2}{7} ਬਦਲ ਹੈ।
7x^{2}-9x+2=7\left(x-1\right)\times \frac{7x-2}{7}
ਸਾਂਝਾ ਡੀਨੋਮਿਨੇਟਰ ਕੱਢ ਕੇ ਅਤੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਘਟਾ ਕੇ x ਵਿੱਚੋਂ \frac{2}{7} ਨੂੰ ਘਟਾ ਦਿਓ। ਫੇਰ, ਫ੍ਰੈਕਸ਼ਨ ਨੂੰ ਸਭ ਤੋਂ ਛੋਟੀਆਂ ਸੰਖਿਆਵਾਂ ਵਿੱਚ ਘਟਾ ਦਿਓ, ਜੇ ਸੰਭਵ ਹੋਵੇ।
7x^{2}-9x+2=\left(x-1\right)\left(7x-2\right)
7 ਅਤੇ 7 ਵਿੱਚ ਸਭ ਤੋਂ ਵੱਧ ਕੋਮਨ ਫੈਕਟਰ 7 ਨੂੰ ਰੱਦ ਕਰੋ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}