ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
x ਲਈ ਹਲ ਕਰੋ
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

7x^{2}-13x-2=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 2 ਨੂੰ ਘਟਾ ਦਿਓ।
a+b=-13 ab=7\left(-2\right)=-14
ਸਮੀਕਰਨ ਨੂੰ ਹੱਲ ਕਰਨ ਲਈ, ਸਮੂਹ ਬਣਾ ਕੇ ਖੱਬੇ ਪਾਸੇ ਦਾ ਫੈਕਟਰ ਕੱਢੋ। ਪਹਿਲਾਂ, ਖੱਬੇ ਪਾਸੇ ਵਾਲੇ ਨੂੰ 7x^{2}+ax+bx-2 ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖਣ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ। a ਅਤੇ b ਨੂੰ ਕੱਢਣ ਲਈ, ਹੱਲ ਕੀਤੇ ਜਾਣ ਵਾਲੇ ਸਿਸਟਮ ਨੂੰ ਸੈਟਅੱਪ ਕਰੋ।
1,-14 2,-7
ਕਿਉਂਕਿ ab ਨੈਗੇਟਿਵ ਹੈ, a ਅਤੇ b ਦੇ ਵਿਪਰੀਤ ਚਿੰਨ੍ਹ ਹੁੰਦੇ ਹਨ। ਕਿਉਂਕਿ a+b ਨੈਗੇਟਿਵ ਹੈ, ਨੈਗੇਟਿਵ ਨੰਬਰ ਦੀ ਪਾਜ਼ੇਟਿਵ ਨਾਲੋਂ ਵੱਡੀ ਐਬਸੋਲਿਉਟ ਵੈਲਯੂ ਹੁੰਦੀ ਹੈ। ਅਜਿਹੇ ਸਾਰੇ ਪੂਰਣ ਅੰਕ ਜੋੜਿਆਂ ਦੀ ਸੂਚੀ ਬਣਾਓ ਜੋ -14 ਪ੍ਰੌਡਕਟ ਦਿੰਦੇ ਹਨ।
1-14=-13 2-7=-5
ਹਰ ਜੋੜੇ ਲਈ ਕੁੱਲ ਜੋੜ ਦਾ ਹਿਸਾਬ ਲਗਾਓ।
a=-14 b=1
ਹੱਲ ਅਜਿਹਾ ਜੋੜਾ ਹੁੰਦਾ ਹੈ, ਜੋ -13 ਦਾ ਜੋੜ ਦਿੰਦਾ ਹੈ।
\left(7x^{2}-14x\right)+\left(x-2\right)
7x^{2}-13x-2 ਨੂੰ \left(7x^{2}-14x\right)+\left(x-2\right) ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖੋ।
7x\left(x-2\right)+x-2
7x^{2}-14x ਵਿੱਚੋਂ 7x ਫੈਕਟਰ ਕੱਢੋ।
\left(x-2\right)\left(7x+1\right)
ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੌਪਰਟੀ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਕੋਮਨ ਟਰਮ x-2 ਦਾ ਫੈਕਟਰ ਕੱਢੋ।
x=2 x=-\frac{1}{7}
ਸਮੀਕਰਨਾਂ ਦੇ ਹੱਲ ਕੱਢਣ ਲਈ, x-2=0 ਅਤੇ 7x+1=0 ਨੂੰ ਹੱਲ ਕਰੋ।
7x^{2}-13x=2
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
7x^{2}-13x-2=2-2
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 2 ਨੂੰ ਘਟਾਓ।
7x^{2}-13x-2=0
2 ਨੂੰ ਆਪਣੇ-ਆਪ ਵਿੱਚੋਂ ਘਟਾ ਕੇ 0 ਬੱਚਦਾ ਹੈ।
x=\frac{-\left(-13\right)±\sqrt{\left(-13\right)^{2}-4\times 7\left(-2\right)}}{2\times 7}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 7 ਨੂੰ a ਲਈ, -13 ਨੂੰ b ਲਈ, ਅਤੇ -2 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-\left(-13\right)±\sqrt{169-4\times 7\left(-2\right)}}{2\times 7}
-13 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-\left(-13\right)±\sqrt{169-28\left(-2\right)}}{2\times 7}
-4 ਨੂੰ 7 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-13\right)±\sqrt{169+56}}{2\times 7}
-28 ਨੂੰ -2 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-13\right)±\sqrt{225}}{2\times 7}
169 ਨੂੰ 56 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-\left(-13\right)±15}{2\times 7}
225 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{13±15}{2\times 7}
-13 ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ 13 ਹੈ।
x=\frac{13±15}{14}
2 ਨੂੰ 7 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{28}{14}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{13±15}{14} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। 13 ਨੂੰ 15 ਵਿੱਚ ਜੋੜੋ।
x=2
28 ਨੂੰ 14 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=-\frac{2}{14}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{13±15}{14} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। 13 ਵਿੱਚੋਂ 15 ਨੂੰ ਘਟਾਓ।
x=-\frac{1}{7}
2 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{-2}{14} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
x=2 x=-\frac{1}{7}
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
7x^{2}-13x=2
ਇਹੋ ਜਿਹੇ ਵਰਗਾਕਾਰ ਸਮੀਕਰਨਾਂ ਨੂੰ ਵਰਗ ਪੂਰਾ ਕਰਕੇ ਹਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਵਰਗ ਨੂੰ ਪੂਰਾ ਕਰਨ ਲਈ, ਸਮੀਕਰਨ ਦਾ ਪਹਿਲੇ x^{2}+bx=c ਦੇ ਫਾਰਮ ਵਿੱਚ ਹੋਣਾ ਲਾਜ਼ਮੀ ਹੈ।
\frac{7x^{2}-13x}{7}=\frac{2}{7}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 7 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x^{2}-\frac{13}{7}x=\frac{2}{7}
7 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ 7 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x^{2}-\frac{13}{7}x+\left(-\frac{13}{14}\right)^{2}=\frac{2}{7}+\left(-\frac{13}{14}\right)^{2}
-\frac{13}{7}, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ -\frac{13}{14} ਨਿਕਲੇ। ਫੇਰ, -\frac{13}{14} ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}-\frac{13}{7}x+\frac{169}{196}=\frac{2}{7}+\frac{169}{196}
ਫ੍ਰੈਕਸ਼ਨ ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਦਾ ਵਰਗ ਕੱਢ ਕੇ -\frac{13}{14} ਦਾ ਵਰਗ ਕੱਢੋ।
x^{2}-\frac{13}{7}x+\frac{169}{196}=\frac{225}{196}
ਸਾਂਝਾ ਡਿਨੋਮੀਨੇਟਰ(ਹੇਠਲੀ ਸੰਖਿਆ) ਲੱਭ ਕੇ ਅਤੇ ਨਿਉਮਰੇਟਰਾਂ(ਉੱਤਲੀ ਸੰਖਿਆ) ਨੂੰ ਜੋੜ ਕੇ \frac{2}{7} ਨੂੰ \frac{169}{196} ਵਿੱਚ ਜੋੜੋ। ਫੇਰ, ਫ੍ਰੈਕਸ਼ਨ ਨੂੰ ਸਭ ਤੋਂ ਛੋਟੀਆਂ ਸੰਖਿਆਵਾਂ ਵਿੱਚ ਘਟਾ ਦਿਓ, ਜੇ ਸੰਭਵ ਹੋਵੇ।
\left(x-\frac{13}{14}\right)^{2}=\frac{225}{196}
ਫੈਕਟਰ x^{2}-\frac{13}{7}x+\frac{169}{196}। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x-\frac{13}{14}\right)^{2}}=\sqrt{\frac{225}{196}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x-\frac{13}{14}=\frac{15}{14} x-\frac{13}{14}=-\frac{15}{14}
ਸਪਸ਼ਟ ਕਰੋ।
x=2 x=-\frac{1}{7}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ \frac{13}{14} ਨੂੰ ਜੋੜੋ।