ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
n ਲਈ ਹਲ ਕਰੋ
Tick mark Image

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

7n^{2}+10n-130=0
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
n=\frac{-10±\sqrt{10^{2}-4\times 7\left(-130\right)}}{2\times 7}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 7 ਨੂੰ a ਲਈ, 10 ਨੂੰ b ਲਈ, ਅਤੇ -130 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
n=\frac{-10±\sqrt{100-4\times 7\left(-130\right)}}{2\times 7}
10 ਦਾ ਵਰਗ ਕਰੋ।
n=\frac{-10±\sqrt{100-28\left(-130\right)}}{2\times 7}
-4 ਨੂੰ 7 ਵਾਰ ਗੁਣਾ ਕਰੋ।
n=\frac{-10±\sqrt{100+3640}}{2\times 7}
-28 ਨੂੰ -130 ਵਾਰ ਗੁਣਾ ਕਰੋ।
n=\frac{-10±\sqrt{3740}}{2\times 7}
100 ਨੂੰ 3640 ਵਿੱਚ ਜੋੜੋ।
n=\frac{-10±2\sqrt{935}}{2\times 7}
3740 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
n=\frac{-10±2\sqrt{935}}{14}
2 ਨੂੰ 7 ਵਾਰ ਗੁਣਾ ਕਰੋ।
n=\frac{2\sqrt{935}-10}{14}
ਹੁਣ, ਸਮੀਕਰਨ n=\frac{-10±2\sqrt{935}}{14} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। -10 ਨੂੰ 2\sqrt{935} ਵਿੱਚ ਜੋੜੋ।
n=\frac{\sqrt{935}-5}{7}
-10+2\sqrt{935} ਨੂੰ 14 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
n=\frac{-2\sqrt{935}-10}{14}
ਹੁਣ, ਸਮੀਕਰਨ n=\frac{-10±2\sqrt{935}}{14} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। -10 ਵਿੱਚੋਂ 2\sqrt{935} ਨੂੰ ਘਟਾਓ।
n=\frac{-\sqrt{935}-5}{7}
-10-2\sqrt{935} ਨੂੰ 14 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
n=\frac{\sqrt{935}-5}{7} n=\frac{-\sqrt{935}-5}{7}
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
7n^{2}+10n-130=0
ਇਹੋ ਜਿਹੇ ਵਰਗਾਕਾਰ ਸਮੀਕਰਨਾਂ ਨੂੰ ਵਰਗ ਪੂਰਾ ਕਰਕੇ ਹਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਵਰਗ ਨੂੰ ਪੂਰਾ ਕਰਨ ਲਈ, ਸਮੀਕਰਨ ਦਾ ਪਹਿਲੇ x^{2}+bx=c ਦੇ ਫਾਰਮ ਵਿੱਚ ਹੋਣਾ ਲਾਜ਼ਮੀ ਹੈ।
7n^{2}+10n-130-\left(-130\right)=-\left(-130\right)
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 130 ਨੂੰ ਜੋੜੋ।
7n^{2}+10n=-\left(-130\right)
-130 ਨੂੰ ਆਪਣੇ-ਆਪ ਵਿੱਚੋਂ ਘਟਾ ਕੇ 0 ਬੱਚਦਾ ਹੈ।
7n^{2}+10n=130
0 ਵਿੱਚੋਂ -130 ਨੂੰ ਘਟਾਓ।
\frac{7n^{2}+10n}{7}=\frac{130}{7}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 7 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
n^{2}+\frac{10}{7}n=\frac{130}{7}
7 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ 7 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
n^{2}+\frac{10}{7}n+\left(\frac{5}{7}\right)^{2}=\frac{130}{7}+\left(\frac{5}{7}\right)^{2}
\frac{10}{7}, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ \frac{5}{7} ਨਿਕਲੇ। ਫੇਰ, \frac{5}{7} ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
n^{2}+\frac{10}{7}n+\frac{25}{49}=\frac{130}{7}+\frac{25}{49}
ਫ੍ਰੈਕਸ਼ਨ ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਦਾ ਵਰਗ ਕੱਢ ਕੇ \frac{5}{7} ਦਾ ਵਰਗ ਕੱਢੋ।
n^{2}+\frac{10}{7}n+\frac{25}{49}=\frac{935}{49}
ਸਾਂਝਾ ਡਿਨੋਮੀਨੇਟਰ(ਹੇਠਲੀ ਸੰਖਿਆ) ਲੱਭ ਕੇ ਅਤੇ ਨਿਉਮਰੇਟਰਾਂ(ਉੱਤਲੀ ਸੰਖਿਆ) ਨੂੰ ਜੋੜ ਕੇ \frac{130}{7} ਨੂੰ \frac{25}{49} ਵਿੱਚ ਜੋੜੋ। ਫੇਰ, ਫ੍ਰੈਕਸ਼ਨ ਨੂੰ ਸਭ ਤੋਂ ਛੋਟੀਆਂ ਸੰਖਿਆਵਾਂ ਵਿੱਚ ਘਟਾ ਦਿਓ, ਜੇ ਸੰਭਵ ਹੋਵੇ।
\left(n+\frac{5}{7}\right)^{2}=\frac{935}{49}
ਫੈਕਟਰ n^{2}+\frac{10}{7}n+\frac{25}{49}। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(n+\frac{5}{7}\right)^{2}}=\sqrt{\frac{935}{49}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
n+\frac{5}{7}=\frac{\sqrt{935}}{7} n+\frac{5}{7}=-\frac{\sqrt{935}}{7}
ਸਪਸ਼ਟ ਕਰੋ।
n=\frac{\sqrt{935}-5}{7} n=\frac{-\sqrt{935}-5}{7}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ \frac{5}{7} ਨੂੰ ਘਟਾਓ।