ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
x ਲਈ ਹਲ ਕਰੋ
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

7\times 8+8\times 7x=2xx
ਵੇਰੀਏਬਲ x, 0 ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ x ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
7\times 8+8\times 7x=2x^{2}
x^{2} ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ x ਅਤੇ x ਨੂੰ ਗੁਣਾ ਕਰੋ।
56+56x=2x^{2}
56 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 7 ਅਤੇ 8 ਨੂੰ ਗੁਣਾ ਕਰੋ। 56 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 8 ਅਤੇ 7 ਨੂੰ ਗੁਣਾ ਕਰੋ।
56+56x-2x^{2}=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 2x^{2} ਨੂੰ ਘਟਾ ਦਿਓ।
-2x^{2}+56x+56=0
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
x=\frac{-56±\sqrt{56^{2}-4\left(-2\right)\times 56}}{2\left(-2\right)}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ -2 ਨੂੰ a ਲਈ, 56 ਨੂੰ b ਲਈ, ਅਤੇ 56 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-56±\sqrt{3136-4\left(-2\right)\times 56}}{2\left(-2\right)}
56 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-56±\sqrt{3136+8\times 56}}{2\left(-2\right)}
-4 ਨੂੰ -2 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-56±\sqrt{3136+448}}{2\left(-2\right)}
8 ਨੂੰ 56 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-56±\sqrt{3584}}{2\left(-2\right)}
3136 ਨੂੰ 448 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-56±16\sqrt{14}}{2\left(-2\right)}
3584 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{-56±16\sqrt{14}}{-4}
2 ਨੂੰ -2 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{16\sqrt{14}-56}{-4}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-56±16\sqrt{14}}{-4} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। -56 ਨੂੰ 16\sqrt{14} ਵਿੱਚ ਜੋੜੋ।
x=14-4\sqrt{14}
-56+16\sqrt{14} ਨੂੰ -4 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{-16\sqrt{14}-56}{-4}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-56±16\sqrt{14}}{-4} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। -56 ਵਿੱਚੋਂ 16\sqrt{14} ਨੂੰ ਘਟਾਓ।
x=4\sqrt{14}+14
-56-16\sqrt{14} ਨੂੰ -4 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=14-4\sqrt{14} x=4\sqrt{14}+14
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
7\times 8+8\times 7x=2xx
ਵੇਰੀਏਬਲ x, 0 ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ x ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
7\times 8+8\times 7x=2x^{2}
x^{2} ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ x ਅਤੇ x ਨੂੰ ਗੁਣਾ ਕਰੋ।
56+56x=2x^{2}
56 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 7 ਅਤੇ 8 ਨੂੰ ਗੁਣਾ ਕਰੋ। 56 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 8 ਅਤੇ 7 ਨੂੰ ਗੁਣਾ ਕਰੋ।
56+56x-2x^{2}=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 2x^{2} ਨੂੰ ਘਟਾ ਦਿਓ।
56x-2x^{2}=-56
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 56 ਨੂੰ ਘਟਾ ਦਿਓ। ਸਿਫਰ ਵਿੱਚੋ ਘਟਾਈ ਗਈ ਰਕਮ ਦਾ ਜਵਾਬ ਉਹੀ ਰਕਮ ਹੁੰਦੀ ਹੈ।
-2x^{2}+56x=-56
ਇਹੋ ਜਿਹੇ ਵਰਗਾਕਾਰ ਸਮੀਕਰਨਾਂ ਨੂੰ ਵਰਗ ਪੂਰਾ ਕਰਕੇ ਹਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਵਰਗ ਨੂੰ ਪੂਰਾ ਕਰਨ ਲਈ, ਸਮੀਕਰਨ ਦਾ ਪਹਿਲੇ x^{2}+bx=c ਦੇ ਫਾਰਮ ਵਿੱਚ ਹੋਣਾ ਲਾਜ਼ਮੀ ਹੈ।
\frac{-2x^{2}+56x}{-2}=-\frac{56}{-2}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ -2 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x^{2}+\frac{56}{-2}x=-\frac{56}{-2}
-2 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ -2 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x^{2}-28x=-\frac{56}{-2}
56 ਨੂੰ -2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}-28x=28
-56 ਨੂੰ -2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}-28x+\left(-14\right)^{2}=28+\left(-14\right)^{2}
-28, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ -14 ਨਿਕਲੇ। ਫੇਰ, -14 ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}-28x+196=28+196
-14 ਦਾ ਵਰਗ ਕਰੋ।
x^{2}-28x+196=224
28 ਨੂੰ 196 ਵਿੱਚ ਜੋੜੋ।
\left(x-14\right)^{2}=224
ਫੈਕਟਰ x^{2}-28x+196। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x-14\right)^{2}}=\sqrt{224}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x-14=4\sqrt{14} x-14=-4\sqrt{14}
ਸਪਸ਼ਟ ਕਰੋ।
x=4\sqrt{14}+14 x=14-4\sqrt{14}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 14 ਨੂੰ ਜੋੜੋ।