g ਲਈ ਹਲ ਕਰੋ (ਜਟਿਲ ਹੱਲ)
\left\{\begin{matrix}\\g=0\text{, }&\text{unconditionally}\\g\in \mathrm{C}\text{, }&k=-67\end{matrix}\right.
k ਲਈ ਹਲ ਕਰੋ (ਜਟਿਲ ਹੱਲ)
\left\{\begin{matrix}\\k=-67\text{, }&\text{unconditionally}\\k\in \mathrm{C}\text{, }&g=0\end{matrix}\right.
g ਲਈ ਹਲ ਕਰੋ
\left\{\begin{matrix}\\g=0\text{, }&\text{unconditionally}\\g\in \mathrm{R}\text{, }&k=-67\end{matrix}\right.
k ਲਈ ਹਲ ਕਰੋ
\left\{\begin{matrix}\\k=-67\text{, }&\text{unconditionally}\\k\in \mathrm{R}\text{, }&g=0\end{matrix}\right.
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
67g-\left(-k\right)g=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ \left(-k\right)g ਨੂੰ ਘਟਾ ਦਿਓ।
67g+kg=0
1 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -1 ਅਤੇ -1 ਨੂੰ ਗੁਣਾ ਕਰੋ।
\left(67+k\right)g=0
g ਵਾਲੀਆਂ ਸਾਰੀਆਂ ਸੰਖਿਆਵਾਂ ਨੂੰ ਮਿਲਾਓ।
\left(k+67\right)g=0
ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ।
g=0
0 ਨੂੰ 67+k ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
\left(-k\right)g=67g
ਪਾਸਿਆਂ ਨੂੰ ਸਵੈਪ ਕਰੋ ਤਾਂ ਜੋ ਸਾਰੇ ਵੇਰੀਏਬਲ ਟਰਮ ਖੱਬੇ ਪਾਸੇ ਉੱਤੇ ਹੋਣ।
-gk=67g
ਸੰਖਿਆਵਾਂ ਨੂੰ ਦੁਬਾਰਾ ਤਰਤੀਬ ਦਿਓ।
\left(-g\right)k=67g
ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ।
\frac{\left(-g\right)k}{-g}=\frac{67g}{-g}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ -g ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
k=\frac{67g}{-g}
-g ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ -g ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
k=-67
67g ਨੂੰ -g ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
67g-\left(-k\right)g=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ \left(-k\right)g ਨੂੰ ਘਟਾ ਦਿਓ।
67g+kg=0
1 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -1 ਅਤੇ -1 ਨੂੰ ਗੁਣਾ ਕਰੋ।
\left(67+k\right)g=0
g ਵਾਲੀਆਂ ਸਾਰੀਆਂ ਸੰਖਿਆਵਾਂ ਨੂੰ ਮਿਲਾਓ।
\left(k+67\right)g=0
ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ।
g=0
0 ਨੂੰ 67+k ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
\left(-k\right)g=67g
ਪਾਸਿਆਂ ਨੂੰ ਸਵੈਪ ਕਰੋ ਤਾਂ ਜੋ ਸਾਰੇ ਵੇਰੀਏਬਲ ਟਰਮ ਖੱਬੇ ਪਾਸੇ ਉੱਤੇ ਹੋਣ।
-gk=67g
ਸੰਖਿਆਵਾਂ ਨੂੰ ਦੁਬਾਰਾ ਤਰਤੀਬ ਦਿਓ।
\left(-g\right)k=67g
ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ।
\frac{\left(-g\right)k}{-g}=\frac{67g}{-g}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ -g ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
k=\frac{67g}{-g}
-g ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ -g ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
k=-67
67g ਨੂੰ -g ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}