x ਲਈ ਹਲ ਕਰੋ
x = -\frac{1}{13} = -0.07692307692307693
y ਲਈ ਹਲ ਕਰੋ
y = \frac{1}{13} = 0.07692307692307693
ਗ੍ਰਾਫ
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
6+13x-13=5+13\left(y-1\right)
13 ਨੂੰ x-1 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
-7+13x=5+13\left(y-1\right)
-7 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 6 ਵਿੱਚੋਂ 13 ਨੂੰ ਘਟਾ ਦਿਓ।
-7+13x=5+13y-13
13 ਨੂੰ y-1 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
-7+13x=-8+13y
-8 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 5 ਵਿੱਚੋਂ 13 ਨੂੰ ਘਟਾ ਦਿਓ।
13x=-8+13y+7
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 7 ਜੋੜੋ।
13x=-1+13y
-1 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -8 ਅਤੇ 7 ਨੂੰ ਜੋੜੋ।
13x=13y-1
ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ।
\frac{13x}{13}=\frac{13y-1}{13}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 13 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x=\frac{13y-1}{13}
13 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ 13 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x=y-\frac{1}{13}
-1+13y ਨੂੰ 13 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
6+13x-13=5+13\left(y-1\right)
13 ਨੂੰ x-1 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
-7+13x=5+13\left(y-1\right)
-7 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 6 ਵਿੱਚੋਂ 13 ਨੂੰ ਘਟਾ ਦਿਓ।
-7+13x=5+13y-13
13 ਨੂੰ y-1 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
-7+13x=-8+13y
-8 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 5 ਵਿੱਚੋਂ 13 ਨੂੰ ਘਟਾ ਦਿਓ।
-8+13y=-7+13x
ਪਾਸਿਆਂ ਨੂੰ ਸਵੈਪ ਕਰੋ ਤਾਂ ਜੋ ਸਾਰੇ ਵੇਰੀਏਬਲ ਟਰਮ ਖੱਬੇ ਪਾਸੇ ਉੱਤੇ ਹੋਣ।
13y=-7+13x+8
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 8 ਜੋੜੋ।
13y=1+13x
1 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -7 ਅਤੇ 8 ਨੂੰ ਜੋੜੋ।
13y=13x+1
ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ।
\frac{13y}{13}=\frac{13x+1}{13}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 13 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
y=\frac{13x+1}{13}
13 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ 13 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
y=x+\frac{1}{13}
1+13x ਨੂੰ 13 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}