ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
x ਲਈ ਹਲ ਕਰੋ
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

16x^{2}-1=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ \frac{3}{8} ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
\left(4x-1\right)\left(4x+1\right)=0
16x^{2}-1 'ਤੇ ਵਿਚਾਰ ਕਰੋ। 16x^{2}-1 ਨੂੰ \left(4x\right)^{2}-1^{2} ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖੋ। ਵਰਗਾਂ ਦੇ ਅੰਤਰ ਨੂੰ ਇਸ ਨਿਯਮ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਫੈਕਟਰ ਵਿੱਚ ਵੰਡਿਆ ਜਾ ਸਕਦਾ ਹੈ: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right)।
x=\frac{1}{4} x=-\frac{1}{4}
ਸਮੀਕਰਨਾਂ ਦੇ ਹੱਲ ਕੱਢਣ ਲਈ, 4x-1=0 ਅਤੇ 4x+1=0 ਨੂੰ ਹੱਲ ਕਰੋ।
6x^{2}=\frac{3}{8}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ \frac{3}{8} ਜੋੜੋ। ਸਿਫਰ ਵਿੱਚ ਜੋੜੀ ਗਈ ਰਕਮ ਦਾ ਜਵਾਬ ਉਹੀ ਰਕਮ ਹੁੰਦੀ ਹੈ।
x^{2}=\frac{\frac{3}{8}}{6}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 6 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x^{2}=\frac{3}{8\times 6}
\frac{\frac{3}{8}}{6} ਨੂੰ ਇੱਕੋ ਫ੍ਰੈਕਸ਼ਨ ਵਜੋਂ ਜਾਹਰ ਕਰੋ।
x^{2}=\frac{3}{48}
48 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 8 ਅਤੇ 6 ਨੂੰ ਗੁਣਾ ਕਰੋ।
x^{2}=\frac{1}{16}
3 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{3}{48} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
x=\frac{1}{4} x=-\frac{1}{4}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
6x^{2}-\frac{3}{8}=0
ਇੱਕ x^{2} ਸੰਖਿਆ ਦੇ ਨਾਲ, ਪਰ ਜਿਸ ਦੇ ਨਾਲ ਕੋਈ x ਸੰਖਿਆ ਨਹੀਂ ਹੁੰਦੀ ਹੈ, ਅਜਿਹੇ ਵਰਗਾਕਾਰ ਸਮੀਕਰਨਾਂ ਨੂੰ ਹਾਲੇ ਤੱਕ ਵਰਗਾਕਾਰ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਦੇ ਨਾਲ ਹਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ, ਇੱਕ ਵਾਰ ਇਹਨਾਂ ਨੂੰ ਸਟੈਂਡਰਡ ਫਾਰਮ: ax^{2}+bx+c=0 ਵਿੱਚ ਪਾ ਦਿੱਤਾ ਜਾਵੇ।
x=\frac{0±\sqrt{0^{2}-4\times 6\left(-\frac{3}{8}\right)}}{2\times 6}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 6 ਨੂੰ a ਲਈ, 0 ਨੂੰ b ਲਈ, ਅਤੇ -\frac{3}{8} ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{0±\sqrt{-4\times 6\left(-\frac{3}{8}\right)}}{2\times 6}
0 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{0±\sqrt{-24\left(-\frac{3}{8}\right)}}{2\times 6}
-4 ਨੂੰ 6 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{0±\sqrt{9}}{2\times 6}
-24 ਨੂੰ -\frac{3}{8} ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{0±3}{2\times 6}
9 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{0±3}{12}
2 ਨੂੰ 6 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{1}{4}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{0±3}{12} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। 3 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{3}{12} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
x=-\frac{1}{4}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{0±3}{12} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। 3 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{-3}{12} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
x=\frac{1}{4} x=-\frac{1}{4}
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।