x ਲਈ ਹਲ ਕਰੋ (ਜਟਿਲ ਹੱਲ)
x=\frac{-7+\sqrt{71}i}{12}\approx -0.583333333+0.702179148i
x=\frac{-\sqrt{71}i-7}{12}\approx -0.583333333-0.702179148i
ਗ੍ਰਾਫ
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
6x^{2}+11x-10-4x=-15
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 4x ਨੂੰ ਘਟਾ ਦਿਓ।
6x^{2}+7x-10=-15
7x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 11x ਅਤੇ -4x ਨੂੰ ਮਿਲਾਓ।
6x^{2}+7x-10+15=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 15 ਜੋੜੋ।
6x^{2}+7x+5=0
5 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -10 ਅਤੇ 15 ਨੂੰ ਜੋੜੋ।
x=\frac{-7±\sqrt{7^{2}-4\times 6\times 5}}{2\times 6}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 6 ਨੂੰ a ਲਈ, 7 ਨੂੰ b ਲਈ, ਅਤੇ 5 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-7±\sqrt{49-4\times 6\times 5}}{2\times 6}
7 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-7±\sqrt{49-24\times 5}}{2\times 6}
-4 ਨੂੰ 6 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-7±\sqrt{49-120}}{2\times 6}
-24 ਨੂੰ 5 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-7±\sqrt{-71}}{2\times 6}
49 ਨੂੰ -120 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-7±\sqrt{71}i}{2\times 6}
-71 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{-7±\sqrt{71}i}{12}
2 ਨੂੰ 6 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-7+\sqrt{71}i}{12}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-7±\sqrt{71}i}{12} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। -7 ਨੂੰ i\sqrt{71} ਵਿੱਚ ਜੋੜੋ।
x=\frac{-\sqrt{71}i-7}{12}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-7±\sqrt{71}i}{12} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। -7 ਵਿੱਚੋਂ i\sqrt{71} ਨੂੰ ਘਟਾਓ।
x=\frac{-7+\sqrt{71}i}{12} x=\frac{-\sqrt{71}i-7}{12}
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
6x^{2}+11x-10-4x=-15
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 4x ਨੂੰ ਘਟਾ ਦਿਓ।
6x^{2}+7x-10=-15
7x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 11x ਅਤੇ -4x ਨੂੰ ਮਿਲਾਓ।
6x^{2}+7x=-15+10
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 10 ਜੋੜੋ।
6x^{2}+7x=-5
-5 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -15 ਅਤੇ 10 ਨੂੰ ਜੋੜੋ।
\frac{6x^{2}+7x}{6}=-\frac{5}{6}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 6 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x^{2}+\frac{7}{6}x=-\frac{5}{6}
6 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ 6 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x^{2}+\frac{7}{6}x+\left(\frac{7}{12}\right)^{2}=-\frac{5}{6}+\left(\frac{7}{12}\right)^{2}
\frac{7}{6}, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ \frac{7}{12} ਨਿਕਲੇ। ਫੇਰ, \frac{7}{12} ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}+\frac{7}{6}x+\frac{49}{144}=-\frac{5}{6}+\frac{49}{144}
ਫ੍ਰੈਕਸ਼ਨ ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਦਾ ਵਰਗ ਕੱਢ ਕੇ \frac{7}{12} ਦਾ ਵਰਗ ਕੱਢੋ।
x^{2}+\frac{7}{6}x+\frac{49}{144}=-\frac{71}{144}
ਸਾਂਝਾ ਡਿਨੋਮੀਨੇਟਰ(ਹੇਠਲੀ ਸੰਖਿਆ) ਲੱਭ ਕੇ ਅਤੇ ਨਿਉਮਰੇਟਰਾਂ(ਉੱਤਲੀ ਸੰਖਿਆ) ਨੂੰ ਜੋੜ ਕੇ -\frac{5}{6} ਨੂੰ \frac{49}{144} ਵਿੱਚ ਜੋੜੋ। ਫੇਰ, ਫ੍ਰੈਕਸ਼ਨ ਨੂੰ ਸਭ ਤੋਂ ਛੋਟੀਆਂ ਸੰਖਿਆਵਾਂ ਵਿੱਚ ਘਟਾ ਦਿਓ, ਜੇ ਸੰਭਵ ਹੋਵੇ।
\left(x+\frac{7}{12}\right)^{2}=-\frac{71}{144}
ਫੈਕਟਰ x^{2}+\frac{7}{6}x+\frac{49}{144}। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x+\frac{7}{12}\right)^{2}}=\sqrt{-\frac{71}{144}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x+\frac{7}{12}=\frac{\sqrt{71}i}{12} x+\frac{7}{12}=-\frac{\sqrt{71}i}{12}
ਸਪਸ਼ਟ ਕਰੋ।
x=\frac{-7+\sqrt{71}i}{12} x=\frac{-\sqrt{71}i-7}{12}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ \frac{7}{12} ਨੂੰ ਘਟਾਓ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}