ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
ਫੈਕਟਰ
Tick mark Image
ਮੁਲਾਂਕਣ ਕਰੋ
Tick mark Image

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

p+q=-11 pq=6\left(-10\right)=-60
ਅਭਿਵਿਅਕਤੀ ਦਾ ਫੈਕਟਰ ਸਮੂਹ ਬਣਾ ਕੇ ਕੱਢੋ। ਪਹਿਲੇ, ਅਭਿਵਿਅਕਤੀ ਨੂੰ 6a^{2}+pa+qa-10 ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖਣ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ। p ਅਤੇ q ਨੂੰ ਕੱਢਣ ਲਈ, ਹੱਲ ਕੀਤੇ ਜਾਣ ਵਾਲੇ ਸਿਸਟਮ ਨੂੰ ਸੈਟਅੱਪ ਕਰੋ।
1,-60 2,-30 3,-20 4,-15 5,-12 6,-10
ਕਿਉਂਕਿ pq ਨੈਗੇਟਿਵ ਹੈ, p ਅਤੇ q ਦੇ ਵਿਪਰੀਤ ਚਿੰਨ੍ਹ ਹੁੰਦੇ ਹਨ। ਕਿਉਂਕਿ p+q ਨੈਗੇਟਿਵ ਹੈ, ਨੈਗੇਟਿਵ ਨੰਬਰ ਦੀ ਪਾਜ਼ੇਟਿਵ ਨਾਲੋਂ ਵੱਡੀ ਐਬਸੋਲਿਉਟ ਵੈਲਯੂ ਹੁੰਦੀ ਹੈ। ਅਜਿਹੇ ਸਾਰੇ ਪੂਰਣ ਅੰਕ ਜੋੜਿਆਂ ਦੀ ਸੂਚੀ ਬਣਾਓ ਜੋ -60 ਪ੍ਰੌਡਕਟ ਦਿੰਦੇ ਹਨ।
1-60=-59 2-30=-28 3-20=-17 4-15=-11 5-12=-7 6-10=-4
ਹਰ ਜੋੜੇ ਲਈ ਕੁੱਲ ਜੋੜ ਦਾ ਹਿਸਾਬ ਲਗਾਓ।
p=-15 q=4
ਹੱਲ ਅਜਿਹਾ ਜੋੜਾ ਹੁੰਦਾ ਹੈ, ਜੋ -11 ਦਾ ਜੋੜ ਦਿੰਦਾ ਹੈ।
\left(6a^{2}-15a\right)+\left(4a-10\right)
6a^{2}-11a-10 ਨੂੰ \left(6a^{2}-15a\right)+\left(4a-10\right) ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖੋ।
3a\left(2a-5\right)+2\left(2a-5\right)
ਪਹਿਲੇ ਸਮੂਹ ਵਿੱਚ 3a ਦਾ ਅਤੇ ਦੂਜੇ ਵਿੱਚ 2 ਦਾ ਫੈਕਟਰ ਬਣਾਓ।
\left(2a-5\right)\left(3a+2\right)
ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੌਪਰਟੀ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਕੋਮਨ ਟਰਮ 2a-5 ਦਾ ਫੈਕਟਰ ਕੱਢੋ।
6a^{2}-11a-10=0
ਦੋ-ਘਾਤੀ ਪੋਲੀਨੋਮੀਅਲ ਦੇ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ਟ੍ਰਾਂਸਫੋਰਮੇਸ਼ਨ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਫੈਕਟਰ ਬਣਾਏ ਜਾ ਸਕਦੇ ਹਨ, ਜਿੱਥੇ x_{1} ਅਤੇ x_{2} ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ ax^{2}+bx+c=0 ਦੇ ਹੱਲ ਹੁੰਦੇ ਹਨ।
a=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\times 6\left(-10\right)}}{2\times 6}
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
a=\frac{-\left(-11\right)±\sqrt{121-4\times 6\left(-10\right)}}{2\times 6}
-11 ਦਾ ਵਰਗ ਕਰੋ।
a=\frac{-\left(-11\right)±\sqrt{121-24\left(-10\right)}}{2\times 6}
-4 ਨੂੰ 6 ਵਾਰ ਗੁਣਾ ਕਰੋ।
a=\frac{-\left(-11\right)±\sqrt{121+240}}{2\times 6}
-24 ਨੂੰ -10 ਵਾਰ ਗੁਣਾ ਕਰੋ।
a=\frac{-\left(-11\right)±\sqrt{361}}{2\times 6}
121 ਨੂੰ 240 ਵਿੱਚ ਜੋੜੋ।
a=\frac{-\left(-11\right)±19}{2\times 6}
361 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
a=\frac{11±19}{2\times 6}
-11 ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ 11 ਹੈ।
a=\frac{11±19}{12}
2 ਨੂੰ 6 ਵਾਰ ਗੁਣਾ ਕਰੋ।
a=\frac{30}{12}
ਹੁਣ, ਸਮੀਕਰਨ a=\frac{11±19}{12} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। 11 ਨੂੰ 19 ਵਿੱਚ ਜੋੜੋ।
a=\frac{5}{2}
6 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{30}{12} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
a=-\frac{8}{12}
ਹੁਣ, ਸਮੀਕਰਨ a=\frac{11±19}{12} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। 11 ਵਿੱਚੋਂ 19 ਨੂੰ ਘਟਾਓ।
a=-\frac{2}{3}
4 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{-8}{12} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
6a^{2}-11a-10=6\left(a-\frac{5}{2}\right)\left(a-\left(-\frac{2}{3}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਮੂਲ ਵਿਅੰਜਕ ਦੇ ਗੁਣਨ ਖੰਡ ਬਣਾਓ। x_{1} ਲਈ \frac{5}{2}ਅਤੇ x_{2} ਲਈ -\frac{2}{3} ਬਦਲ ਹੈ।
6a^{2}-11a-10=6\left(a-\frac{5}{2}\right)\left(a+\frac{2}{3}\right)
ਫਾਰਮ p-\left(-q\right) ਤੋਂ p+q ਤੱਕ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਹੱਲ ਕਰੋ।
6a^{2}-11a-10=6\times \frac{2a-5}{2}\left(a+\frac{2}{3}\right)
ਸਾਂਝਾ ਡੀਨੋਮਿਨੇਟਰ ਕੱਢ ਕੇ ਅਤੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਘਟਾ ਕੇ a ਵਿੱਚੋਂ \frac{5}{2} ਨੂੰ ਘਟਾ ਦਿਓ। ਫੇਰ, ਫ੍ਰੈਕਸ਼ਨ ਨੂੰ ਸਭ ਤੋਂ ਛੋਟੀਆਂ ਸੰਖਿਆਵਾਂ ਵਿੱਚ ਘਟਾ ਦਿਓ, ਜੇ ਸੰਭਵ ਹੋਵੇ।
6a^{2}-11a-10=6\times \frac{2a-5}{2}\times \frac{3a+2}{3}
ਸਾਂਝਾ ਡਿਨੋਮੀਨੇਟਰ(ਹੇਠਲੀ ਸੰਖਿਆ) ਲੱਭ ਕੇ ਅਤੇ ਨਿਉਮਰੇਟਰਾਂ(ਉੱਤਲੀ ਸੰਖਿਆ) ਨੂੰ ਜੋੜ ਕੇ \frac{2}{3} ਨੂੰ a ਵਿੱਚ ਜੋੜੋ। ਫੇਰ, ਫ੍ਰੈਕਸ਼ਨ ਨੂੰ ਸਭ ਤੋਂ ਛੋਟੀਆਂ ਸੰਖਿਆਵਾਂ ਵਿੱਚ ਘਟਾ ਦਿਓ, ਜੇ ਸੰਭਵ ਹੋਵੇ।
6a^{2}-11a-10=6\times \frac{\left(2a-5\right)\left(3a+2\right)}{2\times 3}
ਨਿਉਮਰੇਟਰ ਟਾਇਮਸ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡਿਨੋਮੀਨੇਟਰ ਟਾਈਮਸ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ ਗੁਣਾ ਕਰਕੇ \frac{2a-5}{2} ਟਾਈਮਸ \frac{3a+2}{3} ਨੂੰ ਗੁਣਾ ਕਰੋ। ਫੇਰ, ਫ੍ਰੈਕਸ਼ਨ ਨੂੰ ਸਭ ਤੋਂ ਛੋਟੀਆਂ ਸੰਖਿਆਵਾਂ ਵਿੱਚ ਘਟਾ ਦਿਓ, ਜੇ ਸੰਭਵ ਹੋਵੇ।
6a^{2}-11a-10=6\times \frac{\left(2a-5\right)\left(3a+2\right)}{6}
2 ਨੂੰ 3 ਵਾਰ ਗੁਣਾ ਕਰੋ।
6a^{2}-11a-10=\left(2a-5\right)\left(3a+2\right)
6 ਅਤੇ 6 ਵਿੱਚ ਸਭ ਤੋਂ ਵੱਧ ਕੋਮਨ ਫੈਕਟਰ 6 ਨੂੰ ਰੱਦ ਕਰੋ।