ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
x ਲਈ ਹਲ ਕਰੋ (ਜਟਿਲ ਹੱਲ)
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

6x^{2}-10x+5=0
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 6\times 5}}{2\times 6}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 6 ਨੂੰ a ਲਈ, -10 ਨੂੰ b ਲਈ, ਅਤੇ 5 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-\left(-10\right)±\sqrt{100-4\times 6\times 5}}{2\times 6}
-10 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-\left(-10\right)±\sqrt{100-24\times 5}}{2\times 6}
-4 ਨੂੰ 6 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-10\right)±\sqrt{100-120}}{2\times 6}
-24 ਨੂੰ 5 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-10\right)±\sqrt{-20}}{2\times 6}
100 ਨੂੰ -120 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-\left(-10\right)±2\sqrt{5}i}{2\times 6}
-20 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{10±2\sqrt{5}i}{2\times 6}
-10 ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ 10 ਹੈ।
x=\frac{10±2\sqrt{5}i}{12}
2 ਨੂੰ 6 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{10+2\sqrt{5}i}{12}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{10±2\sqrt{5}i}{12} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। 10 ਨੂੰ 2i\sqrt{5} ਵਿੱਚ ਜੋੜੋ।
x=\frac{5+\sqrt{5}i}{6}
10+2i\sqrt{5} ਨੂੰ 12 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{-2\sqrt{5}i+10}{12}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{10±2\sqrt{5}i}{12} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। 10 ਵਿੱਚੋਂ 2i\sqrt{5} ਨੂੰ ਘਟਾਓ।
x=\frac{-\sqrt{5}i+5}{6}
10-2i\sqrt{5} ਨੂੰ 12 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{5+\sqrt{5}i}{6} x=\frac{-\sqrt{5}i+5}{6}
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
6x^{2}-10x+5=0
ਇਹੋ ਜਿਹੇ ਵਰਗਾਕਾਰ ਸਮੀਕਰਨਾਂ ਨੂੰ ਵਰਗ ਪੂਰਾ ਕਰਕੇ ਹਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਵਰਗ ਨੂੰ ਪੂਰਾ ਕਰਨ ਲਈ, ਸਮੀਕਰਨ ਦਾ ਪਹਿਲੇ x^{2}+bx=c ਦੇ ਫਾਰਮ ਵਿੱਚ ਹੋਣਾ ਲਾਜ਼ਮੀ ਹੈ।
6x^{2}-10x+5-5=-5
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 5 ਨੂੰ ਘਟਾਓ।
6x^{2}-10x=-5
5 ਨੂੰ ਆਪਣੇ-ਆਪ ਵਿੱਚੋਂ ਘਟਾ ਕੇ 0 ਬੱਚਦਾ ਹੈ।
\frac{6x^{2}-10x}{6}=-\frac{5}{6}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 6 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x^{2}+\left(-\frac{10}{6}\right)x=-\frac{5}{6}
6 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ 6 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x^{2}-\frac{5}{3}x=-\frac{5}{6}
2 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{-10}{6} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
x^{2}-\frac{5}{3}x+\left(-\frac{5}{6}\right)^{2}=-\frac{5}{6}+\left(-\frac{5}{6}\right)^{2}
-\frac{5}{3}, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ -\frac{5}{6} ਨਿਕਲੇ। ਫੇਰ, -\frac{5}{6} ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}-\frac{5}{3}x+\frac{25}{36}=-\frac{5}{6}+\frac{25}{36}
ਫ੍ਰੈਕਸ਼ਨ ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਦਾ ਵਰਗ ਕੱਢ ਕੇ -\frac{5}{6} ਦਾ ਵਰਗ ਕੱਢੋ।
x^{2}-\frac{5}{3}x+\frac{25}{36}=-\frac{5}{36}
ਸਾਂਝਾ ਡਿਨੋਮੀਨੇਟਰ(ਹੇਠਲੀ ਸੰਖਿਆ) ਲੱਭ ਕੇ ਅਤੇ ਨਿਉਮਰੇਟਰਾਂ(ਉੱਤਲੀ ਸੰਖਿਆ) ਨੂੰ ਜੋੜ ਕੇ -\frac{5}{6} ਨੂੰ \frac{25}{36} ਵਿੱਚ ਜੋੜੋ। ਫੇਰ, ਫ੍ਰੈਕਸ਼ਨ ਨੂੰ ਸਭ ਤੋਂ ਛੋਟੀਆਂ ਸੰਖਿਆਵਾਂ ਵਿੱਚ ਘਟਾ ਦਿਓ, ਜੇ ਸੰਭਵ ਹੋਵੇ।
\left(x-\frac{5}{6}\right)^{2}=-\frac{5}{36}
ਫੈਕਟਰ x^{2}-\frac{5}{3}x+\frac{25}{36}। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x-\frac{5}{6}\right)^{2}}=\sqrt{-\frac{5}{36}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x-\frac{5}{6}=\frac{\sqrt{5}i}{6} x-\frac{5}{6}=-\frac{\sqrt{5}i}{6}
ਸਪਸ਼ਟ ਕਰੋ।
x=\frac{5+\sqrt{5}i}{6} x=\frac{-\sqrt{5}i+5}{6}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ \frac{5}{6} ਨੂੰ ਜੋੜੋ।