x ਲਈ ਹਲ ਕਰੋ (ਜਟਿਲ ਹੱਲ)
x\in \mathrm{C}
x ਲਈ ਹਲ ਕਰੋ
x\in \mathrm{R}
ਗ੍ਰਾਫ
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
30-6x+6=6\left(6-x\right)
6 ਨੂੰ 5-x ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
36-6x=6\left(6-x\right)
36 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 30 ਅਤੇ 6 ਨੂੰ ਜੋੜੋ।
36-6x=36-6x
6 ਨੂੰ 6-x ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
36-6x+6x=36
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 6x ਜੋੜੋ।
36=36
0 ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -6x ਅਤੇ 6x ਨੂੰ ਮਿਲਾਓ।
\text{true}
36 ਅਤੇ 36 ਵਿੱਚ ਤੁਲਨਾ ਕਰੋ।
x\in \mathrm{C}
ਇਹ ਕਿਸੇ ਵੀ x ਲਈ ਸਹੀ ਹੈ।
30-6x+6=6\left(6-x\right)
6 ਨੂੰ 5-x ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
36-6x=6\left(6-x\right)
36 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 30 ਅਤੇ 6 ਨੂੰ ਜੋੜੋ।
36-6x=36-6x
6 ਨੂੰ 6-x ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
36-6x+6x=36
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 6x ਜੋੜੋ।
36=36
0 ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -6x ਅਤੇ 6x ਨੂੰ ਮਿਲਾਓ।
\text{true}
36 ਅਤੇ 36 ਵਿੱਚ ਤੁਲਨਾ ਕਰੋ।
x\in \mathrm{R}
ਇਹ ਕਿਸੇ ਵੀ x ਲਈ ਸਹੀ ਹੈ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}